
University of Waterloo
Faculty of Engineering

Department of Electrical and Computer Engineering

Strategies on optimizing graph database querying
services

Lifion by ADP

New York City, New York, USA

Prepared by
Arthur Chun-Yin Leung

ID 20601312
userid ac7leung

4A Computer Engineering
25 June 2020

200 University Ave W
Waterloo, Ontario, Canada
N2L 3G1

25 June 2020

Vincent Gaudet, Chair
Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario
N2L 3G1

Dear Sir,

This report, entitled ‘‘Strategies on optimizing graph database querying services’’ was
prepared as my 4A Work Report for the University of Waterloo. This report is in fulfillment
of the course WKRPT 401. The purpose of this report is to compare solutions and strategies
for improving the performance of reader and writer services that interface with graph
database systems, and make them scalable and reliable at the same time.

Lifion by ADP provides software solutions to Human Capital Management and Human
Resources. The software engineering and tech lead of the team that I worked in was led by
Brett Cohen, who oversaw the testing and deployments of the web application. We also
worked closely with other internal teams of Lifion, which use the platform to build features
for clients.

I’d like to thank my supervisor Brett Cohen on providing guidance on the design process
of the project outlined on this report. I hereby confirm that I have received no further help
other than what is mentioned above in writing this report. I also confirm this report has not
been previously submitted for academic credit at this or any other academic institution.

Sincerely,

Arthur Chun-Yin Leung
ID 20601312

Contributions

For the duration of this co-op term, I worked in Lifion’s Flex Structures team, which

consisted of 10 members. The team was mainly organized into the Software Engineering

side and Product side, which includes a Project Manager and Solutions Architect (similar to

a Product Owner or planner).

The Flex Structures team’s main goal was to provide a reliable and fast graph data source

to other teams utilizing the platform. Lifion’s parent company is ADP, which at its core

is a human resources company. Most of the data involved in these transactions pertain to

employee information and organizational structures. A common problem is to retrieve an

employee’s record and status in an organization, as well as their managers and peers in a

timely manner. As any given organization can comprise of tens or hundreds of thousands

of associates, with their positions and statuses changing on a daily basis, the need for an

extensible and high performance database to store this information is evident. The main

web application is implemented in Javascript using Node for the microservices and React

for the user interface (which will not be discussed in depth in this report). Tasks for each

member of the team ranged from active development with the graph database, monitoring

and performance testing, as well as operations tasks to ensure compliance with security and

privacy regulations.

My primary role in the team was to investigate and implement a ‘‘Data Contract’’ design

pattern to reduce coupling between data providers and consumers, with the provider being a

graph database/ API and the consumer being the rest of the platform. This effort was part of

a company wide effort to standardize the means in which teams serve data from the backend

to the frontend UI, and was also meant to improve performance by discouraging poor API

implementation or undocumented APIs.

Additionally I was to assist in efforts to identify defects such as memory or connection leaks

and performance bottlenecks in the reader and writer services of the graph database, which

is the main focus of this report. Some responsibilities in support and operations such as

configuration of testing environments and continuous integration/ deployment systems were

also delegated to me. In a few instances, I also helped other teams automate miscellaneous

tasks such as generation of changelogs when there is a new version released.

iii

Users of the Flex Structures team’s services are actually developers of the platform, who

build applications called ‘‘miniapps’’ for clients. In a way, it is analogous to developing for

a Code Editor or IDE for other developers to use. The Lifion ‘‘miniapps’’ could then be

delivered to clients who are subscribed to the platform as modular features that are packaged

and tailored to the client’s needs and regional regulations. For example, a module might run

payroll or calculate taxes and deduction for an organization in a particular country. These

projects often involve a great deal of cross team collaboration to complete a feature, as each

team is responsible for a service (ex. Persistence team owns the Database Abstraction Layer,

Security team owns authentication and access control to the system).

This report was written to describe the efforts involve in improving the performance of the

Flex Structures graph database read service during my co-op term at Lifion, and to outline

the process through which these performance defects were identified. My responsibilities

were varied but this topic is relevant since modern cloud microservices utilize similar

architectures, and companies that use managed services such as AWS are ubiquitous. The

approaches shown should generally apply to analyzing any type of service that retrieves

from a database, not just a graph one.

The effort I have invested in preparing this report has also furthered my communication and

analytical skills; skills of which I believe are essential to developing professionalism, and

are indispensable in all engineering workplace and academic settings.

In the broader scheme of things, the improvements as a result of implementing this solution

can help encourage better practices in the future. The findings in this report could also be

used as a guide to benchmarking other services.

iv

Summary

The scope of this report is to document the improvement of performance of an existing

graph database read service and write service, with considerations such as scalability and

reliability as the software is subject to heavy workloads.

The major points covered in this report are the requirements and instrumentation performed

on the graph database services, the importance of each criteria in this scenario, and compari-

son of design alternatives. A recommended solution optimized for the problem described

would then be constructed from these available design options.

The major conclusions in this report are that scalability and redundancy should place highest

in the list of considerations when designing any type of microservices, and that technical

debt incurred could have unforeseen impacts when these services work in a distributed

system. The benefits of utilizing a managed cloud computing service such as AWS almost

always outweigh managing instances manually. However, the software engineer should also

be aware of limitations and potential difficulties in testing and deployment, as the associated

drawbacks and costs may not be always justified.

The major recommendations in this report are that development teams should consider

alternate mechanisms to guarantee consistency when working with distributed databases.

Where message queues are employed, retry policy of message queues should be designed

carefully such that starvation does not occur. Real time logging and monitoring tools

are indispensable in helping identify bottlenecks in the system architecture, open source

tools such as Kibana are suitable for these purposes. It is also highly recommended that

solutions for intelligent load balancing be explored in addition to the autoscaling feature

for Kubernetes deployments, to prevent potential spikes in processing time during heavy

workloads.

v

Table of Contents

Contributions . iii
Summary . v
List of Figures . vii
List of Tables . viii
1 Introduction . 1

1.1 Background . 1
1.2 Motivation . 4
1.3 Scope and considerations . 5

2 Requirements . 5
2.1 Summary and Criteria selection . 6
2.2 Available solutions . 6
2.3 Improving read performance . 7
2.4 Improving write performance . 10
2.5 Possible solutions . 12

3 Analysis of proposed solution . 13
4 Performance . 13
5 Conclusions . 16
6 Recommendations . 17
Glossary . 18
References . 19

vi

List of Figures

Figure 1 SQL vs Graph (gremlin) database query 2
Figure 2 Static v. Dynamic queries . 3
Figure 3 High level architecture of the Flex Structures graph database services . . 4
Figure 4 A bloom filter used to filter requests, used with a cache mechanism . . . 9

vii

List of Tables

Table 1 Criteria weighing scheme . 7
Table 2 Qualitative evaluation of read optimization solutions 8
Table 3 Qualitative evaluation of write optimization solutions 11
Table 4 Read performance benchmarks peak values 14
Table 5 Performance for a full synchronization compared to CSV bulk loading . . 14

viii

1 Introduction

This section details the background information and motivation leading up to the optimiza-

tion effort. In addition, the expected scope of the project will also be outlined, as a preface

to the nature of the problem.

1.1 Background

Data modelling is the foundation of database design that is highly specific to the requirements

and types of information being stored and retrieved from a database. The most widely used

relational database system would be MySQL, where information is stored in tables; each

entry is a row and the columns are defined by a schema. In recent years, databases have

rapidly evolved alongside cloud computing to accommodate more business use cases,

scalability, and performance requirements. These databases fall under the NoSQL category,

which stands for ‘‘Not Only SQL’’. As the name implies, this encompasses databases other

than the tabular/ relational system. Examples of these include key-value storage (Redis),

document (MongoDB), and graph databases (Neo4j, AWS Neptune).

Data models should be intuitive to understand and reflect real world use cases. While

there are many paradigms on how data should be modelled and represented (such as

normalization in SQL databases), this report will mainly cover use cases for graph databases.

The fundamental concept of a graph database is that information is stored in vertexes, with

edges representing relationships between connected vertexes. A simple example might be

that persons Alice and Bob are represented as vertexes with a ‘‘name’’ property; if Alice

knows Bob, then a directed edge with this ‘‘knows’’ relationship can be inserted into the

graph. Figure 1 shows an additional example of how a manager-employee relation might be

imagined in both databases; it happens that in this case, a row/ entry in the MySQL database

corresponds to a vertex in the graph.

In order to query the graph structure, one must perform a ‘‘traversal’’, which is simply a

walk over the graph structure and selecting relevant properties. Likewise, to insert data, a

new vertex is created with the relevant edges well. This report will focus on the Apache

TinkerPop graph computing framework, an open source project that provides the Gremlin

1

query language. Compared to tabular relational databases, graph databases exhibit faster

query speeds for searching irregularly structured data. This is possible since it does not

operate by joining tables, but instead by establishing a path for the traversal: Only vertexes

connected by the relevant relationships/ edges are traversed and selected, so query speed

remains fairly constant, irrespective to data volume stored. Compare this to relational

databases, where query times increase exponentially as more join operations are performed.

The caveat for using a graph database would be that write (create, update, and delete)

operations take longer due to having to update the relevant relationships and edges whenever

a new vertex is inserted.

Figure 1. SQL vs Graph (gremlin) database query

The use case for Flex Structures services are mostly read workloads, where a business

structure, usually consisting of employees (Organizational Chart) is queried. The nature

of this data is intrinsically suited as a use case for graph database, and is more intuitive

to visualize as a graph. Examples of more complex queries could be querying all open

positions within a business unit, or the hierarchy/ lineage of a particular employee. At a high

level, use cases can be separated into the following two categories Figure 2:

2

1. Frequently accessed queries: simple/ hardcoded queries (i.e. get my manager), 85-90%

of use cases, highly optimized

2. Dynamically generated queries: can be used to create complex filtering logic, but

queries are generated on the fly, 10-15% of use cases, may not be the most efficient

Figure 2. Static v. Dynamic queries

The Flex Structures team currently supports two graph database providers in the backend:

DataStax Enterprise Graph (DSE) and Amazon Web Services (AWS) Neptune Graph. Both

databases can be accessed through the Gremlin console as part of the Apache TinkerPop

framework. It is planned that the team will migrate from DSE to Neptune entirely over the

next year, so efforts are being taken to improve performance for interfacing with Neptune.

The reason for this move was also due partly to security and overall effort in maintenance;

since AWS Neptune is a fully managed database, the team has less to worry about uptime

and managing clusters of the distributed graph database.

Figure 3 illustrates the services that read and write to the graph database:

On the read side there are the Flex Org Traversal (OT) and Flex Dynamic Read services,

which correspond to the Static and Dynamic query use cases as discussed before, and read

data from the AWS Neptune graph database.

On the write side there are the Reactor and Reconciliation services. The Reactor is responsi-

ble for monitoring messages originating from Maxwell, and writes these changes to the AWS

Neptune graph database. The Reconciliation service is a secondary service that performs a

3

Figure 3. High level architecture of the Flex Structures graph database services

synchronization between the MySQL database and the Neptune graph database, and is run

manually for support purposes. It does so by calculating the differential between the MySQL

data and that of the graph. The key here is that the writer services replicates organizational

data from the MySQL database into the graph database to enable fast querying as mentioned

before, since reading from the graph avoids join operations[1].

1.2 Motivation

With more users adopting Flex Structures as a graph database provider, it is important to

optimize frequently accessed queries. This not only includes the improvement of latency

or response time, but also in resource usage such as memory and CPU. While most of the

services are running in Dockerized containers, and managed by Kubernetes, occasionally

spikes in memory usage were observed. In a few observed instances, these spikes even

caused the read services to stop responding entirely. This had an impact on user experiences

of consumers downstream, so it is an issue that must be addressed.

4

For the services that wrote to the graph database, performance degradation was noted during

heavy loads placed on the Maxwell/ Kinesis message queue. Sometimes, operations to

synchronize the graph database would time out for clients that have a large number of

employees (40-50 thousand).

1.3 Scope and considerations

This report is mainly concerned with strategies and methods to improve the efficiency of

the graph read (Flex OT and Dynamic read services) and graph write services (Flex Reactor

and Reconciliation service). Figure 3 illustrates the services that read and write to the graph

database, and only the technical implementation relevant to performance will be discussed.

Since microservice architectures are ubiquitous in modern day cloud computing and use,

most of these strategies are likely applicable to other microservices.

At the time of writing, the solution had to work for both DSE and Neptune graph databases.

However, since support for DSE was soon to be phased out in favor for a fully managed

environment in AWS, the scope of this report will cover the latter. Aside from that there are

many similarities between interfacing with the DSE and Neptune graph databases, since

they both support the Gremlin query language.

Almost all of the microservices in Lifion are Node.js web services run in Dockerized

containers, with virtualization resources managed by Kubernetes. The amount of resources

(CPU, memory) allocated to each service and specific parameters (timeouts, environment

variables, feature flags) are configurable via Helm charts, but will not be discussed in detail

in this report.

2 Requirements

There are two main requirements that need to be met. Firstly, raw read and write perfor-

mance must be improved in terms of latency. Secondly, the service must be able to handle

concurrent loads effectively as to support multiple requests, and failovers should cause

minimal degradation to the end user’s experience.

5

2.1 Summary and Criteria selection

The main goal was to improve the performance and stability of the read service under heavy

load, while trying to identify any defects. An ideal solution should be reliable and scalable

enough to accommodate dynamic loads. The maximum number of reads in a short period of

time based on real life workloads were about 2000 requests within 5 minutes.

The requirements, or characteristics of the ideal solution are as follows:

• Low latency; service should process requests without significant delay

• Scalable; service should be able to handle dynamic workloads

• Fault tolerant; service should be reliable in the event of failures encountered during

processing

• Informative monitoring; the service should detect and alert whenever heavy workloads

are experienced, so that automated scaling and provisioning of responses is possible

From these requirements we chose the following criteria which will be used to select a

solution:

• Ease of implementation: Is the architecture complex enough to require significant time

in development? (Estimated in man hours, or equivalent metric)

• Ease of testing: How simple is integration testing for the chosen solution?

• Performance Gain: How much is the solution expected to improve latency?

• Compatibility: Would this solution be compatible with the existing system (schema,

formats, data model)?

• Resource cost: Does this solution require more computational resources (CPU and

memory, network bandwidth)

2.2 Available solutions

During preliminary investigation, several problems in the codebase of the services on the

read and write sides were found. While these are not bugs or defects themselves, they

largely contributed to poor performance and scalability under heavy loads. Lifion already

6

has a pipeline in place which involves the use of Jenkins and Terraform to deploy services

to different environments; this leaves very little room for configuration other than tuning

specific parameters (scaling resources, CPU, memory limits) as the process is largely

automated. Therefore to measure fault tolerance, we simply record the number of times a

service has restarted due to errors since the last deployment, using a particular solution.

The following weighing scheme shown in Table 1 was used for the qualitative analysis of

each solution, based on the considerations of this project. An integer score ranging from 1

to 5 was assigned, with the highest score representing that it is the most effective solution of

all the ones considered. For example, if a score of 5 is assigned to ‘‘Implementation’’ that

would mean the solution is the best in terms of ease of implementation. This integer score is

multiplied by the weight to obtain the normalized score. The final score for each solution

was obtained by summing all of the normalized category scores.

Table 1. Criteria weighing scheme

Criteria Impl. Perf. Gain Testing Compat. Resource
Weight 25% 30% 15% 20% 10%

2.3 Improving read performance

It was found that read performance suffered most when there were multiple concurrent

requests, and was agnostic of however many vertexes were in the graph database. The

following three places were identified as potential bottlenecks that could hinder the read

performance under this scenario:

Caching results: The read services return the traversal/ query results as soon as they are

Data modelling: It is possible that operations on the current edge centric data model is

inefficient. The alternative vertex centric model could be used instead.

Request handling: When requests are made to the read service, they are processed sequen-

tially.

For the read services, the following optimizations are proposed. The scores for each solution

are shown in Table 2:

7

1. Caching results: If a request is a recurrent traversal or utilizes a similar traversal,

intermediate results can be cached.

2. Vertex-centric modelling: Changing from Edge-centric data model to a Vertex-

centric model could simplify traversals and remove the need for string processing.

Previously the edge centric model required string processing which could impact

performance.

3. Parallelized reads: Using the Javascript/ NodeJS Promise API, it is possible to paral-

lelize read operations as shown below:

//In parallel:

await Promise.all(requests.map(async request => { await executeGremlinQuery(

request) }))

//In sequence:

for (let request of requests) {

await executeGremlinQuery(request)

}

Table 2. Qualitative evaluation of read optimization solutions

Implementation Perf. Gain Testing Compatibility Resource Score
1. Caching results 4→ 1.0 3→ 0.9 4→ 0.6 3→ 0.6 3→ 0.3 3.4
2. Vertex centric 1→ 0.25 3→ 0.9 5→ 0.45 1→ 0.2 5→ 0.5 2.3

3. Parallelized reads 5→ 1.25 4→ 1.2 3→ 0.45 3→ 0.6 4→ 0.4 3.9

For caching query results, it received a good score in Ease of Implementation and Testing.

To prevent unnecessary graph database accesses, a simple cache library such as Node cache

can be used to improve performance for recurring requests. For further optimization, a prob-

abilistic data structure called a bloom filter can be used with a cache filtering algorithm[2].

The benefit of using this type of filter is that it knows an element either definitely is not in

the set or may be in the set, shown in Figure 4. Performance wise it is inexpensive due to

its probabilistic nature, and is often used to filter elements that do not match a query, but

will still consume more space in memory. When used in tandem with a caching system, it

can increase cache hit rate and theoretically speed up response times; in other words, lower

latency for each request. Instrumentation can also be used to benchmark the cache hit and

miss rates.

For Vertex-centric modelling over Edge-centric modelling, it received the lowest score

8

Figure 4. A bloom filter used to filter requests, used with a cache mechanism

in Ease of Implementation and Compatibility. Since the fundamental data model is being

changed, logic across multiple services would need to be rewritten and rigorously tested to

ensure correct behaviour. The existing edge centric model requires processing to be done

on a ‘‘derived edge’’. A ‘‘derived edge’’ is but an edge label with the following naming

convention: ‘‘sourceTable|targetTable|sourceField|targetField’’, and to traverse this edge

one must concatenate this string and perform a string comparison to see if the edge/ relation

exists on the current vertex. The key idea is that since string operations are expensive and

can impact performance, this solution itself merits special consideration.

9

For parallelized reads, it received the best score in Ease of Implementation as it is a simple

code change, but will utilize more computational power on the graph database host (by

increasing read replicas). However, this is desired, since it was found that the graph database

host’s multi-core CPU was underutilized even during high loads. Using this solution, there

should be no conflicts since the workloads here are reads, so testing would also take minimal

effort.

2.4 Improving write performance

The primary workload is to replicate data from the SQL database, also known as the ‘‘Source

of Truth’’, into the graph database. These change records are sent to the Kinesis stream by

Maxwell, which is a daemon that monitors the MySQL database for changes.

Similarly, the following places were identified as potential bottlenecks that could hinder the

write performance:

Data Abstraction Layer: The database connections are a shared resource (pool) managed by

the MySQL2 Javascript framework[3]. Previous attempts to increase the pool size did not

result in significant performance increase.

Differential calculations: Before writing to the graph database, there is a step to calculate

data parity (difference between the MySQL and graph data) and only sending the necessary

changes. It was a mechanism intended to save bandwidth, at the expense of some processing

power and time.

Kinesis stream: The record stream does not implement any retry policy itself. If a message

from Kinesis fails to get processed by the Reactor service, it remains in the message queue.

Currently it is possible for starvation[4] to occur if the message is not removed from the

queue.

For the write services, the following optimizations are proposed. The scores for each solution

are shown on Table 3:

1. Caching connections:

10

Table 3. Qualitative evaluation of write optimization solutions

Implementation Perf. Gain Testing Compatibility Resource Score
1. Caching connections 3→ 0.75 4→ 1.2 4→ 0.6 5→ 1.0 3→ 0.3 3.85

2. Bulk loading 4→ 1.0 5→ 1.5 3→ 0.45 4→ 0.8 4→ 0.4 4.15
3. Retry policy 4→ 1.0 3→ 0.9 2→ 0.3 4→ 0.8 5→ 0.5 3.5

The database connections are managed by the MySQL2 Node library, and it was found

that the pool object is cached in memory. Previous implementations of the read service

used Node cache to accomplish this, but it could be susceptible to a memory leak.

2. Bulk loading:

AWS Neptune provides a mechanism to import bulk data in the CSV format. Instead

of manually calculating the differential between MySQL and Neptune graph manually

and writing it (in the case of the Reconciliation service), it is possible to dump the

MySQL data into a CSV file and use this method.

3. Retry policy:

If a write query fails, it should retry up to 3 times, then remove the message from the

Kinesis stream (then place it in a failed queue).

For caching database connections, the existing implementation stores the database pool

in memory and deletes it if no new requests arrive after 10 minutes. This design decision

was made to free up resources and memory when the service is not in use, but the time

spent initializing a new connection pool (cold start) could contribute to poor latency. It is

simple to reverse this change to yield better latency during during sparse workloads but will

consume more resources.

For bulk loading, it is an option made available as a feature by the AWS Neptune graph

database. This solution requires setting up an AWS S3 storage node to store the CSV files,

which can be accomplished trivially, but requires more network bandwidth.

For implementing a retry policy, this was the simplest solution to provide recoverability, but

at best is a stop gap measure. If the application logic was flawed and a write query were to

fail because of it, it only ensures that subsequent queries can be written to the graph database

(after retrying 3 times). Due to this fact, complexity in testing increases, and additional

logging or monitoring should be put in place to ensure errors are caught and are not left

unreported.

11

2.5 Possible solutions

After performing the qualitative analysis of the optimization strategies, the following viable

solutions for the read and write services were considered:

1. Caching read results while bulk loading periodically for writes:

Implementing a cache layer and bloom filter would certainly increase application

complexity, but yield better performance. However, going with this solution may also

warrant additional effort in experimenting with different cache eviction algorithms,

in order to yield the best performance under real-world work loads. The bulk loading

ensures minimal overhead incurred due to network delays. This solution makes the

most sense when network infrastructure is the bottleneck, or when the data center is

located very far from the user, since both strategies’ goal here is to minimize the time

spent accessing the database.

2. Parallelizing reads while implementing a retry policy for writes:

Utilizing the Javascript Promise API to send requests in parallel makes full use of

the database host’s processing capability. When it comes to writing, the retry policy

prevents starvation of the service and so tries to minimize disruption to the quality of

service, while providing a means for recovery (by retrying the failed write query).

3. Parallelizing reads while bulk loading periodically for writes:

This alternative is the result of striking a compromise between complexity of imple-

menting additional logic and minimizing overhead for keeping the graph database

consistent. Although there is not a recovery mechanism in place like the previous

solution, if the bulk loading takes a relatively short amount of time, it can be run

frequently instead to supersede the need of a recovery mechanism.

Out of these, the best scoring option was to parallelize reads while Bulk loading periodically

for writes, with a combined score of 8.05:

12

3 Analysis of proposed solution

The simplicity of implementation and testing means that this solution could be realized

in a short time frame with relatively less effort, and it is expected to yield a noticeable

performance gain. It is also the least risky solution to implement, in that the underlying data

model remains the same, and most of the application logic changes are isolated to that of

the read services.

With the parallel read query processing, it is expected that concurrent requests can scale with

the number of CPU threads available on the graph database host. This should be reflected

with increased CPU utilization while latency is kept low at the same time.

On the write queries, sending them in bulk to the graph eliminates the network round

trip delay incurred by processing each message one-by-one instead. A more advanced

implementation may parallelize this process as well, but logic to check for read-write

and write-write conflicts and linearization anomalies is required when using this strategy

for distributed databases. One might accomplish this through the use of a distributed

checkpointing system, but the technical implementation is out of scope for this solution.

Altogether, this solution is estimated to take 1.5 sprints (3 weeks) to fully implement and

test by a single software engineer. It is ideal since the Flex team is small and cannot afford

to spend extended periods of time rewriting large amounts of logic (at least without external

aid or a contractor), which is required in changing the base data model. At the same time, the

implementation should be simple for most developers to understand and be able to debug,

when compared with something like the bloom filter. There were also concerns of security

and for the bulk loading API, but as AWS is a fully managed cloud host, it also provides

Identity Access Management (IAM) for enforcing security policies and access rules, and

can be integrated with this solution.

4 Performance

For the read services, a simulated load was applied for 5 minutes using Autocannon[5], an

automated testing tool that is designed to stress test HTTP services. Peak values of response

13

latency and CPU usage of the graph database host were recorded after each trial, and at

each level of intensity. The results showed that by parallelizing read queries, it is possible to

achieve full CPU utilization of the graph database host, while capping the latency below

100 milliseconds Table 4. Although it was benchmarked against DSE in this case, the same

principle should also apply for AWS Neptune.

Benchmarking of the write services was done by performing a full synchronization between

the MySQL ‘‘Source of Truth’’ database and the AWS Neptune graph database. The client

sizes (number of vertexes in the graph) varied from 5,000 to 40,000, and the runtimes of

each trial is recorded in Table 5. It is clear that the method of bulk loading improved times

by an order of magnitude. A noteworthy observation here is that the lower bound for times

seems to be around 2 minutes; upon further investigation it was found that most of the time

was spent copying the CSV file to the AWS S3 storage node. In other words, it is limited by

network speed. Nonetheless, this optimization proved to be a significant improvement over

the previous implementation.

Table 4. Read performance benchmarks peak values

Requests per minute Sequential Parallelized
Latency (ms) CPU (%) Latency (ms) CPU (%)

100 54 7 52 8
300 110 10 64 30
500 140 12 60 42
1k 205 16 67 81
3k 1530 25 81 99

Table 5. Performance for a full synchronization compared to CSV bulk loading

Client size Normal synchronization CSV Bulk loading

5k 10 minutes 2 minutes
7k 18 minutes 2 minutes

15k 32 minutes 3 minutes
40k DNF 5 minutes

The implementation of this solution successfully fulfilled all the requirements described in

section 2.1 with the following characteristics:

Low latency: Parallelized read requests helped reduce latency under heavy loads, the results

are shown in Table 4. For write workloads, the bulk CSV import option is far superior in

terms of runtime.

14

Scalable: For read workloads, CPU utilization was much better compared to sequen-

tial processing, and latency did not increase significantly even at the highest simulated

workloads.

Fault tolerance: AWS Neptune provides the option of creating read-only replicas to offload

requests from the primary replica. In the event that the primary is unreachable, the failover is

handled automatically, which is another benefit of using a fully managed (graph) database.

Self recovering: The bulk loading will overwrite any outdated or otherwise corrupted data

in the graph database with the latest copy. As far as consistency goes, it only needs to be

consistent with the MySQL ‘‘Source of Truth’’ database.

15

5 Conclusions

Based on the findings from the previous analysis and benchmarks, it was determined that

the solution utilizing parallelized reads while bulk writes would be the most suitable for

performance improvements. Although a less sophisticated solution, it required the least

amount of effort by the team members, and performed well for this purpose. The bulk write

strategy was also successful in effectively reducing time taken to populate the graph database

by an order of magnitude. In conclusion, this solution served well for the requirements that

were initially set forth to optimize read and write performance.

16

6 Recommendations

Based on the analysis and conclusions in this report, it is recommended that additional

testing be conducted on both read and write services, under a variety of scenarios such

as unstable network conditions. Additional monitoring tools should also be explored to

help catch degradation in quality of service before it reaches the end user. In addition, the

following tasks are worth considering as next steps, if more time and effort can be afforded:

• Collect sufficient data to form a predictive load balancing model

• Streamline the process in which bulk data is loaded into AWS Neptune, or create a

user friendly interface for other teams to use (as a self-serve tool)

• Implement the bloom filter and cache solution to further improve query latency

• Investigate the long term scalability of the Vertex-centric data model, and whether it is

worth the effort to rewrite application logic for the conversion

17

Glossary

API: Application Programming Interface, a defined set of subroutines of a software applica-
tion that allows external components or other applications to interact with the application.

AWS: Amazon Web Services, a fully managed cloud computing and hosting platform
provided by Amazon.com, Inc.

CSV: Comma Separated Values, a data format in which fields values are delimited by
commas. Also formalized as the RFC 4180 standard.

DSE: DataStax Enterprise Graph, a graph database provider capable of providing scalability
and analytics for massive datasets.

WKRPT: Work-term report; the acronym used by the University of Waterloo Undergradu-
ate Calendar.

18

References

[1] Rik Van Bruggen. Demining the ”Join Bomb” with graph queries. 2013. URL: http:
//blog.bruggen.com/2013/01/demining-join-bomb-with-graph-queries.
html.

[2] Matei Ripeanu and Adriana Iamnitchi. ‘‘Bloom Filters Short Tutorial’’. In: (Sept.
2001).

[3] Andrey Sidorov. MySQL2. URL: https://github.com/sidorares/node-mysql2#
readme.

[4] Sandro Fiore. Grid and cloud database management. Springer, 2011, p. 183.
[5] Matteo Collina. Autocannon. URL: https://github.com/mcollina/autocannon.

19

http://blog.bruggen.com/2013/01/demining-join-bomb-with-graph-queries.html
http://blog.bruggen.com/2013/01/demining-join-bomb-with-graph-queries.html
http://blog.bruggen.com/2013/01/demining-join-bomb-with-graph-queries.html
https://github.com/sidorares/node-mysql2#readme
https://github.com/sidorares/node-mysql2#readme
https://github.com/mcollina/autocannon

	Contributions
	Summary
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Scope and considerations

	Requirements
	Summary and Criteria selection
	Available solutions
	Improving read performance
	Improving write performance
	Possible solutions

	Analysis of proposed solution
	Performance
	Conclusions
	Recommendations
	Glossary
	References

