
University of Waterloo
Faculty of Engineering

Department of Electrical and Computer Engineering

Designing an Automated Cybersecurity Threat
Mitigation System

Bayer Radiology

Mississauga, Ontario, Canada

Prepared by
Arthur Chun-Yin Leung

ID 20601312
userid ac7leung

2B Computer Engineering
23 November 2018

200 University Ave W
Waterloo, Ontario, Canada
N2L 3G1

23 November 2018

Vincent Gaudet, Chair
Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario
N2L 3G1

Dear Sir,

This report, entitled ‘‘Designing an Automated Cybersecurity Threat Mitigation System’’
was prepared as my 2B Work Report for the University of Waterloo. This report is in
fulfillment of the course WKRPT 301. The purpose of this report is to document the
process on selecting technologies to be used in creating an automated system for performing
upgrades, testing, and reporting defects for virtualized computer systems.

Bayer Radiology specializes in developing software to interface with medical imaging
devices, for both private and government healthcare entities. The Automation department
of the Radimetrics team that I worked in was headed by Alex Bi, who oversaw the testing
and deployments of the web application. We also worked closely with the QA department
which defines various protocols for testing the Radimetrics web application.

I’d like to thank Alex Bi on providing guidance on the design process of the project outlined
on this report. I hereby confirm that I have received no further help other than what is
mentioned above in writing this report. I also confirm this report has not been previously
submitted for academic credit at this or any other academic institution.

Sincerely,

Arthur Chun-Yin Leung
ID 20601312

Contributions

For the duration of this co-op term, I worked in Bayer Radiology’s Radimetrics team, which

consisted of around 30 members. The team was mainly organized into the ‘‘2.X’’ (Existing

product) and ‘‘3.X’’ (New product currently under active development), and was further

sub-categorized by role such as Development, Testing, or Customer Support.

Radimetrics team’s main goal was to develop a web based application for viewing, retrieving,

and storing medical examinations. These examinations or studies would contain images

from CT and Xray scanners, accompanied by the dosage information contained in a report.

A main problem in modern healthcare systems is to track each patient’s radiation dosage,

to ensure they have not exceeded the safe amount prescribed over a fixed time period;

Radimetrics provides physicians with software tools in order to address this problem. This

web application was originally implemented in Adobe Flex, which has reached its end-of-life

support at the time of writing according to Adobe’s official source. While plans to use a

modern Javascript framework (React) for the 3.X release were in place, maintenance and

testing of previous releases were still in order. Tasks for each member of the team ranged

from researching suitable technologies and implementations to bug fixing, testing, and

provisioning servers for existing customers.

My primary role in the team was to research, develop, and maintain an automated solution

to test and report any bugs in the existing 2.X application, and ensure that upgrades to the

application server’s operating system would not cause any unexpected behaviour. Since

the transition to a JavaScript based application would happen eventually, compatibility

was also a major consideration in designing this automated testing solution. My daily

tasks ranged from implementing test protocols in code to researching and documentation

of development related processes. Responsibilities in development operations (DevOps)

such as maintenance of the network and provisioning of virtual machines used by the

development and testing teams were also delegated to me. As such, though my title was

‘‘Software Development/Tester’’, I took on various tasks from other roles and learned in the

process while gaining a broad skillset.

Clients of the Radimetrics team include hospitals and clinics in both private and public

sectors and most of these clients use modern Enterprise Linux servers (RedHat, CentOS)

iii

as part of their information systems. The Radimetrics product could then be delivered to

the customer as an installer executable, or as a bare metal virtual machine image; an entire

operating system that is run by a hypervisor host. These projects would require a team

member to travel to a remote site per the customer’s requirements, and provision the real

server in person. Such one-off configurations at customer sites were common for clients

who are government entities, as they have stringent security standards; often in the form of

a checklist. Prior to shipping the Radimetrics product as a virtual machine image, it must

undergo a ‘‘hardening process’’: Software updates and patches to eliminate vulnerabilities

would be applied, with the goal to mitigate all attack vectors. This process also involves

documenting each change meticulously, followed immediately by a round of thorough

testing of the application and operating system. This was a tedious process done manually,

and there existed no automated solution to accomplish this prior to my arrival. Thus one

of my initial responsibilities within the Radimetrics team also included the manual testing

of said virtual machines for clients, before I laid the groundwork to realize an automated

solution later.

This report was written to describe an implementation of such an automated solution to

the given problem during my co-op term at Bayer Radiology, and to outline the process of

selecting software alternatives in realizing the solution. Though my work less pertains to

the core application development, and more to the testing of the web application itself, the

approach I took to design new test cases would most closely resemble that of ‘‘black box’’

testing. Thus, the efforts exerted in implementing the solution and preparing this report has

collectively advanced my understanding of the DevOps process.

The effort I have invested in preparing this report has also furthered my communication and

analytical skills; skills of which I believe are essential to developing professionalism, and

are indispensable in all engineering workplace and academic settings.

In the broader scheme of things, the automated tests I have implemented will continue

to serve its purpose. The solution can be scaled to accommodate the testing of additional

software releases, and also serve as a guide to automate other manual processes.

iv

Summary

The scope of this report is to document the implementation of an automated solution for

testing of a web application software, with considerations such as compatibility and re-

usability as the software approaches its end of life (and a new software release to succeed

it).

The major points covered in this report are the requirement and criteria selection of an ideal

automated solution, the importance of each criteria in this scenario, and comparison of

design alternatives. A recommended solution optimized for the problem described would

then be constructed from these available design options.

The major conclusions in this report are that testing solutions should be designed with

scalability in mind, and how cloud computing can help realize such a solution. However,

automation should not be treated as a solution to all problems, as the costs may not be

justified in all cases. When used appropriately though, it could complement the productivity

of manual QA testers, and benefit the development team as a whole. If the team already

does have an automated solution, spending time to optimize and refactor the codebase could

be beneficial in terms of overall performance.

The major recommendations in this report are that development teams should consider

commercial technologies even if open source options are more popular. Features and

benefits that these options provide could greatly reduce the efforts in implementing the

solution, and in turn can reduce time spent maintaining said solution. It is also highly

recommended that solutions for documentation and notification for the development process

be explored, to prevent bugs being left unnoticed or working knowledge being lost among

team members.

v

Table of Contents

Contributions . iii
Summary . v
List of Figures . vii
List of Tables . viii
1 Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Scope and considerations . 3

2 Requirements . 4
2.1 Summary and Criteria selection . 4

3 Design options . 5
3.1 Summary of choices available for enhanced testing 5
3.2 Comparison of options for backend testing 7
3.3 Comparison of options for frontend testing 8
3.4 Possible solutions . 10

4 Analysis of proposed solution . 11
4.1 Setup . 13

5 Performance . 14
6 Additional optimizations and improvements 15
7 Conclusions . 15
8 Recommendations . 16
Glossary . 18
References . 19
Appendix A Example test case . 20

vi

List of Figures

Figure 1 An overview of the development and testing network topology 2
Figure 2 Illustration of how reverse SSH allows inbound connections through a

firewalled network . 2
Figure 3 ‘‘Tree’’ structure of UI elements: search box and button are separate

elements but belong to the same parent web page 9
Figure 4 Sequence of jobs within the automated solution pipeline 11
Figure 5 Example test case for testing HL7 inbound functionality 12
Figure 6 Jenkins pipeline for frontend testing (Ranorex) 13
Figure 7 The optimal solution with k = 3 and 5 elements to be packed 16

vii

List of Tables

Table 1 5 different combinations of the Radimetrics application and Operating
System to be tested . 3

Table 2 Criteria weighing . 6
Table 3 Qualitative evaluation of backend testing options 7
Table 4 Qualitative evaluation of frontend testing options 9

viii

1 Introduction

This section details the background information and motivation leading up to the design of

this automated solution. In addition, the expected scope of the project will also be outlined,

as a preface to the nature of the problem.

1.1 Background

The concern of data breaches due to poor security implementations are ever-growing,

especially in light of recent cases. As a healthcare corporation, Bayer Radiology takes all

appropriate measures to guard Personally Identifiable Information (PII) of patients, such

that any damages would be mitigated in the event of a breach. Measures taken also include

precautionary ones; for instance, keeping the operating systems of all machines up to date

in order to close any vulnerabilities, and hence minimize the number of attack vectors that

may be exploited.

When performing security upgrades however, compatibility is a critical aspect. A new

and untested software update to an operating system could break other features that were

previously functional. For this reason, the Radimetrics team utilizes virtual machines (VMs)

on a cloud hosting service for the purpose of testing on different operating system versions.

Each virtual machine can be running either CentOS or RedHat Enterprise Linux (RHEL)

which are common operating systems for enterprise application servers[1]. This VM network

also simulated a real world hospital network, where patients’ information and imaging data

could be sent between each machine or ‘‘node’’.

There were two independent networks of hypervisor hosts: ‘‘VHN’’ and ‘‘HP Gen’’ refer to

‘‘Virtual Hospital Network’’ and the server lineup from the manufacturer Dell respectively

(See Figure 1). VMs from both networks are accessed through reverse SSH tunnelling via

a central ‘‘support server’’ (See Figure 2) for manual testing purposes. This network was

designed with scalability being the main consideration; adding a new virtual machine would

only require mapping a few additional ports.

1

Figure 1. An overview of the development and testing network topology

Figure 2. Illustration of how reverse SSH allows inbound connections through a firewalled
network

1.2 Motivation

With up to dozens of such virtual machines deployed simultaneously for development and

testing purposes, it can become an arduous task to manually ensure that each machine has the

2

latest security updates. The fact that these machines may have different operating systems,

with different releases of the web application running further complicates matters. This calls

for an automated solution, where ideally the upgrades are performed automatically, then a

round of testing is performed to ensure that the functionalities of the Radimetrics application

remains unaffected.

1.3 Scope and considerations

This report is mainly concerned with strategies and methods to improve the efficiency of the

QA and testing team. Any software development project that is cloud based and utilizing

multiple virtual machines can likely implement a similar solution, and see the benefits

outlined in the following report compared to alternatives also mentioned below.

At the time of writing, the solution only had to address 3 major releases of the Radimetrics

web application, across 2 operating systems; a total of 5 combinations as listed in Table 1

OS OS Version Radimetrics Release

RHEL 6.3 2.5.1b
CentOS 6.7 2.7.1
RHEL 6.7 2.7.1

CentOS 6.9 2.8.1b
RHEL 6.9 2.8.1b

Table 1. 5 different combinations of the Radimetrics application and Operating System to
be tested

The application itself is built with Adobe Flex. Though now a legacy piece of software

no longer under active development, maintaining support for existing customers are a

priority in addition to provisioning upgrades. Prior to this solution, manually testing every

functionality in the application was achieved by following a protocol. There already existed

a set of ‘‘System Tests’’ which were designed to run on the backend and test certain

features, including optical character recognition (OCR) and garbage collection mechanisms

of the software. These tests were designed to verify the functionality of the backend and

integrity of data, and are designed to be unit tests. The need for a unified automated solution

became evident, and the following sections will cover the process from requirements through

analysis, to reach a practical implementation.

3

2 Requirements

In order to construct a solution, a good understanding of the problem should be attained.

Once that is done, definition of the requirements is the next step, and after that the selection

of criteria to judge the effectiveness of the solution. The scope and considerations as

previously discussed are the major factors during this selection process.

2.1 Summary and Criteria selection

The main goal was to build an automated system to upgrade each virtual machine’s operating

system, while testing for any incompatibilities with the application due to these upgrades.

The solution was to be automated as a Jenkins Continuous Integration pipeline, with a means

of reporting any uncovered defects to the development team. Part of the requirement was

also to design the tests to be as reusable as possible, as the Radimetrics team had plans to

migrate to a JavaScript frontend in the near future.

The requirements, or characteristics of the ideal solution are as follows:

• Automated, with no human involvement other than the start and end of testing

• Modular; easily upgradeable and maintainable

• Robust; failure handling capabilities a single test failing should not affect other tests

• Compatible with existing means of automation (such as Jenkins)

From these requirements we select the following criteria:

• Time cost: How much time is required to fully realize the solution? (Estimate in man

hours, or equivalent metric)

• Financial cost: Are there licensing or support staff costs? Computational resources?

Storage? (Estimate in dollars)

• Modularity: How decoupled are the test cases from each other? (Level of modularity/

customizability)

• Test Coverage: How comprehensive is the solution at testing all facets of the web

application?

4

• Re-usability: Could this solution be used for newer iterations of the Radimetrics web

application? (Level of re-usability)

• Feedback: Does this solution clearly describe any defects found during testing? (Feed-

back capability)

3 Design options

There may be many ways to implement a solution, but usually the goal is to do so with the

most efficiency in terms of resources and time. As different options may offer attributes that

suit certain requirements better than other alternatives, special consideration may be given

to one option in certain circumstances. Generally however, quantitative analysis by means

of decision matrices can be used to determine the suitability of each alternative; a solution

can then be constructed using a combination of the best suited options found this way.

3.1 Summary of choices available for enhanced testing

To address the main goal of decreasing time wasted in manual/ repetitive testing, different

technologies were considered based on the features that they offered, compatibility with the

build pipeline, and upgradeability. Figure 1 illustrates the software system that was to be

tested. It consisted of an Apache Tomcat application server, a Postgres relational database,

and the main application written in Adobe Flex (Flash). From here on, both the database

and application server will be referred to as the ‘‘backend’’, and the flash technology as

‘‘frontend’’ unless specified otherwise. This is illustrated by how the content is served from

the browser (front facing) while the data processing and storage logic are abstracted behind

the application server.

For the backend or serverside components of the web application, the choices were:

1. Manual testing: This option involves loading test data using solely the frontend, going

through the process as if it were a customer/ hospital setting up the application for the

first time. Data validation could be performed by querying the database directly.

2. Open source and third party tools: This makes use of open source tools or libraries

5

(DCMTK, Horos, HAPI TestPanel) or from commercial vendors (OsiriX), to facilitate

the testing of sending and receiving medical imaging data and patient data.

3. System (unit) testing: A unit based approach for testing specific features; test data

would be loaded as input and processed by the application logic. The final output

would then be compared against a set of expected results, which determines whether

the application is behaving normally.

For the frontend (UI of web application), the following were considered:

1. Manual testing: The application would be tested by a member in the QA team follow-

ing instructions outlined in a formal test protocol.

2. Ranorex: This commercial UI testing technology is based on referencing all UI

elements as XPaths, which then is stored in an object model repository. Automated

tests can be built using this repository of UI elements with C# code[2].

3. TestComplete: This commercial UI testing technology is similar to Ranorex, which

also provides UI automation and an object model repository. Automated tests can be

built using this repository of UI elements with C# script code[2].

4. Selenium (flash) WebDriver: Since modern browsers such as Mozilla Firefox and

Google Chrome provide WebDriver tools for developers, they can be used in automat-

ing web applications.

A weighing scheme was chosen according to the importance of each category in the consid-

erations of this project, which is shown on Table 2. Each category of an option was then

assigned a numerical score from 0 to 10 based on qualitative analysis, with 0 representing

the worst and 10 being the best. For example, if a 10 is assigned to ‘‘Financial Cost’’ that

would mean the option is the most cost-effective: this is the number to the left of the arrow

(→). The respective weight is applied to obtain the criterion score (ex. score of 5 with a

15% weight would yield 5 * 0.15 = 0.75) to the right of this arrow. The final score for each

option was obtained by summing all the criteria scores across the row of the table.

Table 2. Criteria weighing

Criteria T. cost. F. cost. Modu. Cover. Maint. Re-use. Feedback
Weight 20% 10% 15% 25% 5% 10% 15%

6

Table 3. Qualitative evaluation of backend testing options

T. cost F. cost Modu. Cover. Maint. Re-use. Feedback. Score
1. Manual testing 9→ 1.8 9→ 0.9 5→ 0.75 5→ 1.25 8→ 0.4 6→ 0.6 7→ 1.05 6.75
2. 3rd party tools 5→ 1 6→ 0.6 4→ 0.6 7→ 1.75 6→ 0.3 8→ 0.8 8→ 1.2 6.25

3. Unit testing 5→ 1 7→ 0.7 9→ 1.35 10→ 2.5 6→ 0.3 5→ 0.5 9→ 1.35 7.7

3.2 Comparison of options for backend testing

The main purpose of testing the backend is to verify the integrity of data stored by the

database and served by the webserver. Additional purposes include checking configurations

such as file system structure and permissions, and prevent unauthorized access from other

applications. Other tests could also be monitoring for memory leaks, software upgrade

compatibility etc...

The first option of manual testing required little to no additional costs: a team member can

be trained within a few days, and no other expenses would be incurred. However, it was

given the lowest score in automation, as it would require the dedication of at least 1 tester

for each instance of the application server. Moreover, it would be difficult to monitor all

parameters of the operating system at once; such as in the case of a memory leak.

The second option of utilizing open source and third party tools scored well for time cost,

maintenance effort, and feedback. Since these tools targeted specific functionality, they

work out of the box and provide logging capabilities. Low scores were given for Coverage

as the tools mainly tested the connectivity functionality, such as sending and retrieving

of patient and imaging data. Although it is a major feature of the application, these tools

cannot encompass every single feature that customers may need to use in the Radimetrics

application.

The third option offered the best in automation and coverage, as a comprehensive unit test

suite can incorporate different libraries for testing specific functions. Re-usability would

suffer if the team ever decides to rewrite the entire backend of the system, but since it is

not known at the time of writing, it is assumed to remain the same. This option would also

result in the most time spent setting up and maintenance.

7

3.3 Comparison of options for frontend testing

The main purposes of testing the frontend were: Firstly, to ensure that user interface elements

in the web application were being displayed in the correct location.

Secondly, to ensure that content served up to date and correct. Sometimes caching of old

webpages could result in the application displaying of outdated data, and hence would not

be desired. The application used SOAP APIs as the communication interface, but was not

open to clients other than the web application developed by the Radimetrics team. From this

we analyze the four options:

The first option of manual testing using a web browser received the worst score in Automa-

tion; there is none. However, a competent QA tester can learn after the initial trials, and

provide better feedback with little maintenance and setup time in subsequent tests. The

only drawback would be that WebDrivers usually require more memory and computational

power, especially when being run for extended periods of time in automated testing; this

point is revisited in Section 6.

The second option involves using the commercial Ranorex automation toolkit. It is a soft-

ware automation solution that can emulate mouse and keyboard input for testing purposes.

Ranorex operates by mapping all UI elements into a tree based on XPath, and saving each

element into an object repository (Figure 3). Automation of the UI is done trivially simply

by referring to each object, using a few lines of C# code (see Listing 1). In addition, auto-

mated image comparison is another feature offered that could be leveraged during testing.

Licensing is based on a one time fee: each ‘‘premium’’ license for a developer costs $4,990

USD and additional ‘‘runtime’’ licenses for each automation server costs $890 USD each.

1 repository.SearchTextBox.Click ();

2 repository.SearchTextBox.PressKeys (" UWaterloo ");

3 repository.SearchButton.Click();

Listing 1: Code snippet of how one would automate a search

The third option is to use TestComplete, another commercial tool like Ranorex. It uses

8

Figure 3. ‘‘Tree’’ structure of UI elements: search box and button are separate elements but
belong to the same parent web page

Table 4. Qualitative evaluation of frontend testing options

T. cost F. cost Modu. Cover. Maint. Re-use. Feedback. Score
1. Manual 3→ 0.6 9→ 0.9 5→ 0.75 6→ 1.5 9→ 0.45 6→ 0.6 5→ 0.75 5.55
2. Ranorex 10→ 2 3→ 0.3 8→ 1.2 9→ 2.25 6→ 0.3 8→ 0.8 8→ 1.2 8.05

3. TestComplete 8→ 1.6 4→ 0.4 8→ 1.2 9→ 2.25 6→ 0.3 5→ 0.5 9→ 1.35 7.6
4. Selenium 5→ 1 10→ 1 7→ 1.05 8→ 2 5→ 0.25 4→ 0.4 6→ 0.9 6.6

C#Script for building automation flows, and can automate desktop, web, and mobile tech-

nologies. Licensing model is also similar to Ranorex’s: each developer or platform ‘‘bundle’’

costs $7,000 USD and additional automation agent costs $699 USD. Additional modules

must be purchased separately unlike Ranorex, which includes all features such as mobile

testing under a premium license.

The fourth option of using Selenium webdriver to test offered good automation capabilities.

Being an open source technology it is free, albeit less developer-friendly compared to the

features that commercial automation tools offer. As such it received lower scores for setup

and time cost. Its report generation capabilities depend on which library is used, but is

generally similar if not better than the commercial tools previously mentioned. In addition,

cross browser testing must be implemented manually (separate webdrivers for Internet

Explorer and Firefox, for example). However, one of its main advantage is its popularity

(over 30% market share)[3], so adoption is widespread and usually solutions exist to any

problems encountered during testing.

9

3.4 Possible solutions

After performing the qualitative analysis of the technologies available for automation

purposes, the following viable solutions that use a combination of frontend and backend

tools were proposed:

1. Manual testing of frontend with third party tools for backend:

This solution would involve the most human action, as the tools serve to reduce the

time taken rather than completely automate the process. It requires no additional

computing resources apart from the dedication of a QA team and their workstation.

Sample imaging and patient data could be preloaded on a shared DICOM node and

fetched at the time of testing, and sending of new patient examinations can be done

through user friendly utilities such as OsiriX or Horos.

2. Ranorex automated testing with Unit testing backend:

This solution makes the most use of automation, but is the most costly due to licensing

and computational resources. Depending on the implantation, the system may be scaled

horizontally[4] by executing test agents in parallel, thus actual runtime can be made

inversely proportional to number of agents available assuming that load is balanced

equally:

ActualRuntime =
TotalRuntime

NumberO f Agents

Where total runtime is the time taken if a single agent were to run every test case in the

suite sequentially.

A single Jenkins job can be scheduled to run this solution however often is desired, but

also introduces a responsibility to update and maintain unit tests.

3. Selenium WebDriver frontend tests with third party tools for backend:

The web application will be tested using Selenium webdriver tool on the desktop.

This should be able to cover most frontend use cases of the web application. Backend

testing would be achieved with Selenium flash which uses Java code (and likely Maven

for dependency management). As both Java and Selenium are free technologies, this

solution would be most appealing from a financial cost standpoint, as it only requires

the purchase of additional computational resources while offering a similar level of

automation. However, it may take more time to setup and maintain compared to using

10

commercial options.

4. TestComplete frontend with Unit testing backend:

Using TestComplete instead of Ranorex would mean a cheaper horizontal scaling

cost (considering the cost of a single runtime license). However, that would mean

giving up IDE support (such as Visual Studio) when writing test cases, and more time

spent learning a third party scripting language. Automation capabilities would still be

considered better than any manual alternative, and it offers Selenium support as well.

4 Analysis of proposed solution

A high level overview of each step in the Jenkins pipeline is illustrated in Figure 4

Figure 4. Sequence of jobs within the automated solution pipeline

Ultimately, it was determined that Ranorex should used over other commercial tools such

as TestComplete. Although the latter had a less costly scaling option, it would require

more time to learn a proprietary scripting language; whereas a developer is more likely to

already have exposure to the popular Visual Studio to begin development with the Ranorex

framework. Also as C# is a fully featured object oriented language supported by Microsoft,

functionality of .NET libraries by other developers can also be incorporated when writing

tests, which makes it more powerful than a scripting language by itself. Lastly, Ranorex

includes a ‘‘guaranteed initial response time of 24 hours or less’’[2] in their enterprise

customer policy, which can help minimize downtime of testing, and in turn lower the

response time to Radimetrics’ customers.

This solution demonstrates good modularity using a customizable ‘‘runner’’ file, where

individual test cases could be selected to run. This meant that the level of coverage could be

customized on demand. For example, one may wish to perform ‘‘smoke testing’’, where

11

Figure 5. Example test case for testing HL7 inbound functionality

only the essential functions of the application are checked. In the case of Radimetrics’ web

application, the main functionalities included sending and receiving study data. Most of this

communication occurs over TCP channels, and thus can be automated with C# code (See

Appendix A).

An example test case could be verifying the inbound functionality of the application: it

should be able to receive HL7 messages from other applications, for administering patients

in a hospital.

The following sequence of steps can be fully automated as illustrated in Figure 5:

As demonstrated, these Ranorex tests generally follow the ‘‘black box’’ testing methodology;

the internal state of the application is not tested, but given certain inputs, the system’s

behaviour or output should correspond to expected results.

In the end, this solution was estimated to take 1 month to implement, and in reality took

little over 5 weeks for I was the only developer of this solution. Due to limitations of

the automation toolkit, certain test cases could not be realized fully and required some

workarounds. This included the switching of active directory users on Windows based

systems to test a Single Sign On feature, but was determined that manual testing of this

feature can be done.

Costs were mainly attributed to the cloud hosting of these VMs. According to the rackspace

hosting service used by the Radimetrics team, a single general purpose Linux server instance

12

is around $108 per month[5]. Additional servers added would incur this scaling cost, as this

solution expands to accommodate later software releases (Radimetrics 2.9 or 2.10).

4.1 Setup

Figure 6. Jenkins pipeline for frontend testing (Ranorex)

The proposed pipeline in Figure 6 requires the following sequence of jobs to run:

1. Revert VM to pre-upgrade conditions:

A snapshot of the VM was taken prior to upgrading, so reverting to a ‘‘clean’’ state before

testing allows the process to be reproducible.

2. Applying RHEL License:

In order to install updates, a machine must be registered with an active RHEL subscription.

As there were more VMs than subscription keys, they needed to be shared/ rotated each

time a server is used for testing.

3. Perform OS upgrade:

This step runs the yum package manager [6] and performs a distribution upgrade, which

updates the operating system to the latest minor release and applies all the necessary security

updates. A log of all packages updated or installed in this process is also committed to the

SVN[7] repository for logging purposes.

4. Perform Unit (System) tests:

Performs the testing of specific backend functionality (OCR, garbage collection, database

schema etc...)

5. Perform Ranorex tests:

13

Performs the smoke test suite, which only tests the core functionalities of the application;

basic funcitons such as logging in, sending data outbound and receiving inbound communi-

cations. Like in step 3, the reports produced by Ranorex would be committed to the SVN

repository to be read later.

5 Performance

A total of 7 Windows test agents were configured to automate test cases. Servers 1 to 6 were

reserved for running a full version of the automated test suite, which tested all possible use

cases of the frontend. Server 7 was used to run a ‘‘smoke test’’ suite, where only the core

and major connectivity features were tested.

Since the scope of this project was to test the major features following an operating system

upgrade, it was determined that a ‘‘smoke test’’ would suffice instead of running the full

suite every time. This smoke test took around 2 hours compared to 8 hours if the full test

suite were to be run instead. In addition, CPU time can be saved as the smoke test only

required 1 automation server to be powered on (instead of 6).

The implementation of this solution successfully fulfilled all the requirements described in

section 2.1 with the following characteristics:

Automation: The Jenkins pipeline can be set up to run daily, and configured to rotate

through all permutations of Operating System and Radimetrics versions. At the time of

writing there were 5 servers, so it can be set up to rotate through one instance per weekday.

Modularity: By specifying boolean parameters in the Jenkins pipeline, certain steps may

be skipped. For instance, setting the flag to run ‘‘System Test’’ option to ‘‘false’’ skips the

running of unit tests in the pipeline. As for the VM network, a new VM can be added any

time to the ‘‘VHN’’ network for testing, as it would be in the same subnet as the Jenkins

CI and frontend automation servers. If a new VM is added to the ‘‘HP Gen’’ network, a

simple portforwarding entry would need to be added to the network router, which should

take no more than a few minutes. These characteristics prove the solution to be a flexible

and modular one.

14

Robustness: Each time the test is run, the VM is reverted to a ‘‘clean snapshot’’. This

ensures that changes made from previous runs of the test do not affect the current test’s

results. As mentioned in the above point as well, individual test cases may be skipped

without changing the behaviour of other cases. The backend test suite was also scheduled

daily, but could also be run as needed since it took 5 to 20 minutes per test case.

Feedback: After the operating system is upgraded, a logfile was created detailing all new

software that was installed or upgraded, then committed to the SVN repository. Then after

the smoke testing finishes, reports of each test case are also committed to SVN where

the developers and testers can later read. The automated reports contain detailed logs and

screenshots. Video capture of the entire automated process is another helpful feature that

can help identify defects, as well as document how to reproduce them.

6 Additional optimizations and improvements

In order to improve the scalability and re-usability of this automated test framework, it

would be preferable to automate the load balancing of test cases so load can be distributed

evenly across all automation servers. This would be a generalized ‘‘k-partition’’ problem

[8], where the goal is to minimize the difference between each partition’s sum. To illustrate

with a simple example, suppose there are 3 servers which can each execute a test case at a

time, independently of each other. There are 5 test cases, which take 10, 25, 40, 50, and 60

minutes respectively. The optimal solution is illustrated in Figure 7 which minimizes the

difference to 5 minutes; so all test cases will be completed within 65 minutes. A solution is

possible using a dynamic programming greedy algorithm [9], but further discussions would

fall outside the scope of this report.

7 Conclusions

It was concluded that using commercial automation software was the best option to realize

this solution; it was determined that the features it offered outweighed the financial costs,

as discussed in the qualitative analysis and performance sections. The modularity of test

cases in Ranorex allowed levels of testing to be customized to the testing and development

15

Figure 7. The optimal solution with k = 3 and 5 elements to be packed

team’s needs, which was one of the major criteria. A high level of automation was also

achieved with a Jenkins pipeline, to prepare the VMs before testing (reverting snapshots,

applying licenses) as well as reporting the results at the end of testing. Overall, it met all the

requirements set initially, as a preventative measure to address cybersecurity concerns.

8 Recommendations

Based on the analysis and conclusions in this report, it is recommended that the developers

of the new ‘‘3.X’’ Radimetrics software should consider a similar solution for automated

testing. In addition, the following items should be considered in order to improve the existing

testing solution:

• Research and implement an efficient load balancing algorithm to distribute test cases

across frontend testing servers

16

• Research a more robust method to test communication between frontend and backend.

For the new 3.X product it is likely that JSON webservices will be utilized, therefore a

suitable automated testing tool such as Postman[10] should be considered.

• Document best practices and guidelines for other developers and testers to use and

expand the automated solution.

• Find a way to standardize the process of loading test data, so that this process can be

automated as well in the future.

17

Glossary

ADT: Admit/ Discharge/ Transfer, a type of HL7 message that updates patients’ information
and status within software utilized by a hospital.

API: Application Program Interface, a set of defined subroutines of a software application
that allows other components or applications to interact with the software..

DevOps: Development and Operations, practice that focuses on automating processes in
software development, testing, and deployment/ release and make these processes more
efficient.

DICOM: Digital Imaging and Communications in Medicine, an international standard for
storing/ transmitting data between medical imaging devices.

HL7: Health Level Seven International, an international standard for storing/ transmitting
data between medical imaging devices.

HTTP: HyperText Transfer Protocol, a protocol definition or rules for transferring and
formatting of messages and data between information systems.

QA: Quality Assurance, a team or department in software development concerned with the
testing of software, with the goal of delivering bug-free software to customers.

TCP: Transmission Control Protocol, a standard (RFC 793) by the Department of Defense
that defines how programs communicate over a network in computer systems.

UI: User Interface, the means or components of software that the user will use to interact
with the application, usually with visual or graphical elements.

VM: Virtual Machine, an emulated computer system that provides functionality of physical
computers, such as running an operating system. Multiple virtual machines may be run by a
single hypervisor or host machine.

WKRPT: Work-term report; the acronym used by the University of Waterloo Undergradu-
ate Calendar.

XML: Extensible Markup Language, a human and machine readable format for encoding
data, using enclosing tags.

XPath: Syntax for defining parts of an XML document, using path expressions to navigate
the XML document. Expressions can be used to select nodes or node-sets in an XML
document, such as web elements in an HTML document.

18

References

[1] Comparison of the usage of Linux vs. Windows for websites. Web Technology Surveys.
URL: https://w3techs.com/technologies/comparison/os- linux, os-
windows.

[2] Ranorex. Ranorex GmbH. URL: https://www.ranorex.com/.
[3] Software Testing Tools products. iDatalabs. URL: https://idatalabs.com/tech/

software-testing-tools.
[4] David Beaumont. How to explain vertical and horizontal scaling in the cloud. Ed. by

ibm.com. ibm.com [Online; posted 9-April-2014]. 2014.
[5] Cloud Servers Pricing. Rackspace Inc. URL: https://www.rackspace.com/

cloud/servers/pricing#num3.
[6] Edgewall Software. Yum Package Manager. Version 3.4.3. May 4, 2018. URL: http:

//yum.baseurl.org/.
[7] Apache Subversion Design Spec. URL: http://svn.apache.org/repos/asf/

subversion/trunk/notes/subversion-design.html#goals.
[8] Brian Hayes. ‘‘The Easiest Hard Problem’’. In: American Scientist 90.2 (2002), p. 113.

DOI: 10.1511/2002.2.113.
[9] Utkarsh Trivedi. Partition of a set into K subsets with equal sum. URL: https:

//www.geeksforgeeks.org/partition-set-k-subsets-equal-sum/.
[10] Postman. Postdot Technologies, Inc., 2016.

19

https://w3techs.com/technologies/comparison/os-linux,os-windows
https://w3techs.com/technologies/comparison/os-linux,os-windows
https://www.ranorex.com/
https://idatalabs.com/tech/software-testing-tools
https://idatalabs.com/tech/software-testing-tools
https://www.ibm.com/blogs/cloud-computing/2014/04/09/explain-vertical-horizontal-scaling-cloud/
https://www.rackspace.com/cloud/servers/pricing#num3
https://www.rackspace.com/cloud/servers/pricing#num3
http://yum.baseurl.org/
http://yum.baseurl.org/
http://svn.apache.org/repos/asf/subversion/trunk/notes/subversion-design.html#goals
http://svn.apache.org/repos/asf/subversion/trunk/notes/subversion-design.html#goals
https://doi.org/10.1511/2002.2.113
https://www.geeksforgeeks.org/partition-set-k-subsets-equal-sum/
https://www.geeksforgeeks.org/partition-set-k-subsets-equal-sum/

Appendix A Example test case

HL7 ADT test case

The following snippet of C# code is used to send an ADT HL7 message. ADT stands
for ‘‘Admit, Discharge, Transfer’’ and such messages are generally used to update patient
information as well, such as given/ last names, date of birth etc.

The data in each field of the message is delimited with the pipe character — as shown
in Listing 3 and the The identifier ‘‘ADT A08’’ is used to indicate the ‘‘Update patient
information’’ event type.

The message is then encoded in a MLLP (Minimum Lower Layer Protocol) frame: it is
prefixed with the ‘‘Vertical Tab’’ character and suffixed with a ‘‘File Separator’’ and
‘‘Carriage Return’’, before getting sent through the TCP connection.

1 public void SendHL7ADT () {

2 string host = Config.IP;

3 int port = Int32.Parse(Config.HL7Port);

4 string [] adts = {

5 "MSH |^~\\&| Vision Series RIS - PACS|RADIOLOGY IMAGING ASSOCIATES|PACS

||20161201140812|| ADT^A08 |1612011408125630|P|2.3.1\r\nPID |1| MRN20170426007|

T818267 || ZZTEST^"+dow+"||19500101|F|FORMS ||^^^^^ US ||(303) 111 -1111|||U"

6 };

7 Report.Info("Day of week is " + dow);

8

9 foreach (string adt in adts) {

10 try {

11 // Encode the message into MLLP (Minimum Lower Layer Protocol)

frame , then write to TCP stream

12 TcpClient client = new TcpClient ();

13 Report.Info("Sending ADT: \n" + adt);

14 client.Connect(host , port);

15

16 ASCIIEncoding enc = new ASCIIEncoding ();

17 byte[] b1 = { 0x0B }; // VT

18 byte[] b2 = { 0x1C , 0x0D }; // FS , CR

19

20 // MLLP frame:

21 // +----+-----------+----+----+

22 // | VT | <message > | FS | CR |

23 // +----+-----------+----+----+

24 List<byte[]> d = new List<byte[]>();

25 d.Add(b1);

26 d.Add(enc.GetBytes(adt));

27 d.Add(b2);

28

29 byte[] ba = d.SelectMany(a => a).ToArray ();

30 Stream stm = client.GetStream ();

31 stm.Write(ba, 0, ba.Length);

32

33 byte[] bb = new byte [1000];

34 int k = stm.Read(bb, 0, 1000);

35

36 string s = System.Text.Encoding.UTF8.GetString(bb, 0, k - 1);

37

38 client.Close();

39

40 Report.Info("Received reponse from server: " + s);

41 Report.Success("Sent HL7 message successfully");

42 } catch (Exception ex) {

43 Report.Failure("Exception when writing to TCP: " + ex.Message);

20

44 }

45 }

46 }

Listing 2: C# code to send an HL7 message

1 MSH |^~\&| Vision Series RIS - PACS|RADIOLOGY IMAGING ASSOCIATES|PACS ||20161201140812||

ADT^A08 |1612011408125630|P|2.3.1

2 PID |1| MRN20170426007|T818267 || ZZTEST^GIVENNAME |19500101|F|FORMS ||^^^^^ US ||(303)

111 -1111|||U

Listing 3: Example of an ADT HL7 message to update the patient’s name and other details

21

	Contributions
	Summary
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Scope and considerations

	Requirements
	Summary and Criteria selection

	Design options
	Summary of choices available for enhanced testing
	Comparison of options for backend testing
	Comparison of options for frontend testing
	Possible solutions

	Analysis of proposed solution
	Setup

	Performance
	Additional optimizations and improvements
	Conclusions
	Recommendations
	Glossary
	References
	Example test case

