
University of Waterloo
Faculty of Engineering

Department of Electrical and Computer Engineering

Developing an automated testing strategy for a
multi-tier mobile application

Ultimate Software Group Inc.
144 Bloor St. W

Toronto, Ontario, Canada

Prepared by
Arthur Chun-Yin Leung

ID 20601312
userid ac7leung

1B Computer Engineering
8 January 2017

200 University Ave W
Waterloo, Ontario, Canada
N2L 3G1

8 January 2017

Vincent Gaudet
Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario
N2L 3G1

Dear Sir:

This report, entitled ‘‘Developing an automated testing strategy for a multi-tier mobile
application’’ was prepared as my 1B Work Report for the University of Waterloo. This
report is in fulfillment of the course WKRPT 201. The purpose of this report is to propose
an optimal strategy for software testers to maximize their effectiveness in their role, using a
combination of approaches as well as my own findings on the subject matter.

Ultimate Software Group Inc. establishes itself as a ”Software as a Service” (SaaS) company,
mainly specializing in providing web application software solutions for other companies
to manage human resources matters; such as payroll, taxes, and employee benefits. The
Quality Assurance (QA) group of the mobile platform team that I worked in was managed
by Yuvraj Vedvyas, which oversaw the testing of the software application.

I’d like to thank Yuvraj on providing guidance on the design process of the project outlined
on this report. I hereby confirm that I have received no further help other than what is
mentioned above in writing this report. I also confirm this report has not been previously
submitted for academic credit at this or any other academic institution.

Sincerely,

Arthur Chun-Yin Leung
ID 20601312

Contributions

For the duration of this co-op term, I worked in Ultimate Software’s mobile platform team,
which consisted of around 20 members in the office. The team was further organized into
the ”Frontend development”, ”Backend development”, and ”Quality Assurance (QA)” roles;
I was assigned a role in QA, and reported to Yuvraj.

The team’s main goal was to develop a JavaScript web application compatible with modern
browsers, for users on mobile devices to interface with the company’s UltiPro product, and
would also provide native applications for both the Android and iOS mobile platforms. It
was to be a lightweight client with a responsive design, that communicates with a ”backend”
web service through Representational State Transfer (REST) APIs. Tasks ranging from
feature research and implementation to bug fixing would be reviewed on the team Kanban
board during daily stand-up meetings, where team members discuss their progress and any
hindrances that occur.

My primary role in the team was to verify that new features produced by the developers did
not introduce bugs and undesired behaviour to the application, by utilizing various software
tools (Selenium, Postman) to reproduce bugs and automate testing. Additionally, I verified
that the feature additions met specification standards, and that they followed the defined
User Experience (UX) guidelines. My daily tasks ranged from manual exploratory testing on
hardware (iOS and Android smart phones) to designing automated test cases and scenarios
using aforementioned tools, then providing feedback to developers according to my findings.
I also assisted in setting up meetings with members across other products’ teams and UX
designers, to ensure that everyone was aware of any major changes or design decisions
made by our team’s developers. That way, there would be less potential conflicts in the
future, regarding the design of a particular component of the software for example.

Occasionally, a live demo of the application would be requested by clients or executives that
visit. I would then help the team create and import the necessary test data, and configure
each use case or test flow for the feature being demoed. I would also detail the steps I have
carried out in documentation, for other team members and future co-op students to reference
if there exists the need to replicate the process.

The relationship between this report and my job is a direct one. Though my work less pertains
to the development, and more to the testing of the mobile application itself, I was responsible
for the design of new unit test cases and maintenance of the existing test collection for the
mobile team; with the addition of a new feature, thorough test cases must be crafted covering
from the front (User Interface/ UI) to back end (RESTful APIs). Thus, the experience has
improved my problem solving abilities as a tester, and collectively reinforced my skills as a

iii

programmer, by increasing my awareness of best practices in development and avoiding bad
or bug-prone ones. I have also gained significant insight into software architecture design
and the efforts demanded in the upkeep of multi-tier software systems. The effort I have
invested in preparing this report has also furthered my communication and analytical skills;
skills of which I believe are essential to developing professionalism, and are indispensable
in all engineering workplace and academic settings.

In the broader scheme of things, the collection of automated tests I have written for the mo-
bile team will continue to serve its purpose. It will provide the groundwork for maintaining
the current product’s robustness as features are added, and also be a template for the testing
or development of future products in other teams within Ultimate Software.

iv

Summary

The scope of this report is to propose an optimal solution for testing mobile software, which
use a multi-tier architecture as is the case with Ultimate Software’s mobile platform product.
Even though the mobile devices mentioned here mainly refer to handheld smart-phones, the
approaches discussed in the analysis can be extended and applied to other mobile device
form factors (tablets and wearable smart watches for example) since the concepts of software
testing should be device or implementation agnostic.

The major points covered in this report are the different types of testing, benefits and
drawbacks of common techniques used, alternative methods, determining when automation
is suitable, and how optimization of tests can aid performance.

The major conclusions in this report are that if a software development team is testing their
product purely manually, it can be a good idea to consider implementing an automated
solution. However, automation should not be treated as a solution to all problems (in other
words, a ”golden hammer”), but can greatly increase efficiency of the development team
when used appropriately. If there team does have an automated solution, then investing time
in revisiting test cases to optimize them could be beneficial for overall performance.

The major recommendations in this report are that project managers and development teams
should consider different automation technologies in testing if they haven’t already, and
that tests, automated or not, should be written with maintainability and re-usability in mind.
It is also highly recommended that testers should explore means of notifying developers
whenever a bug or test failure is found, as to reduce the likelihood that a bug is left unnoticed.

v

Table of Contents

Contributions . iii
Summary . v
List of Figures . vii
List of Tables . viii
1 Introduction . 1

1.1 Background . 1
1.2 Motivation . 1
1.3 Scope and considerations . 2

2 Requirements . 3
2.1 Summary and Criteria selection . 3

3 Design options . 4
3.1 Summary of choices available for enhanced testing 4
3.2 Comparison of options for backend testing 6
3.3 Comparison of options for frontend testing 7
3.4 Possible solutions . 8

4 Analysis of proposed solution . 9
4.1 Setup . 10

5 Performance . 11
6 Additional optimizations and improvements 12
Conclusions . 14
Recommendations . 15
Glossary . 16
References . 17
Appendix A Maven Configuration . 18

vi

List of Figures

Figure 1-1 A high level overview of a typical software development build pipeline . 2
Figure 3-1 An overview of the multi-tier architecture of the mobile web application . 4
Figure 4-1 The software development build pipeline with proposed testing process . 11

vii

List of Tables

Table 3-1 Criteria weighing . 6
Table 3-2 Qualitative evaluation of backend testing options 7
Table 3-3 Qualitative evaluation of frontend testing options 8
Table 6-1 Time taken to run frontend tests before and after refactoring 13
Table 6-2 Time taken to run backend tests before and after refactoring 13

viii

1 Introduction

1.1 Background

The development industry-level software in the modern day can involve complex infrastruc-

ture. Code written by developers usually pass through several processes before becoming

part of the final product, and reaches the clients’ hands. One of the main reasons for this

practice is to allocate time in ensuring the product’s quality, to minimize the chance of a

customer having a bad experience, as it entails negative reviews. As such, these processes in-

clude but are not limited to code reviews, automated and manual testing, and demonstration

the pre-release software to clients.

A high level overview of typical software build pipeline is provided in Figure 1-1. First,

any code additions or edits written by collaborating developers would be submitted to

a repository with support for managing versions and changes, also known as a Version

Control System (VCS). Examples of systems include Git [4], SVN [1], and the legacy CVS

[3]. Once the code changes are stored, a set of ”build agents” would pull the latest source

code to compile the application and publish binary artifacts (if there are any, which may

be used as components in building other software that require a certain functionality of the

code). Finally, the compiled or packaged application can be deployed and run on different

environments, from testing to production.

1.2 Motivation

Often times, software testers will only be able to test their product once it has been set up in a

testing environment. Apart from errors found at build-time, bugs due to developer oversight

that slips past code review and in configuration remain hidden until the deployment stage.

Once a bug is identified through exploratory or manual testing, a ticket or report is sent

through some form of triage system to notify developers that a fix is in order. Then the fix

made by the developer must move through the pipeline until it reaches the tester; a process

that could span a few days depending on the severity of the bug. This could be inconvenient

especially facing imminent deadlines (such as an upcoming demo), or switching focus to

1

Figure 1-1. A high level overview of a typical software development build pipeline

work on another feature. Ideally, the developer should be notified as early as possible in the

build pipeline of any bugs, to save otherwise wasted time in waiting for the feature to be

verified.

1.3 Scope and considerations

This report is mainly concerned with strategies and methods to improve the effectiveness of

software testers in the software build pipeline, which is shown in Figure 1-1. Any software

development project of substantial scope, that uses a multi-tier architecture and also utilizing

a similar pipeline process should be able to benefit from the testing strategies outlined in the

following sections of this report.

For Ultimate Software Mobile development team in particular, their multi-tiered web appli-

cation utilizes multiple pipelines in the build process and several deployment environments;

one for development, demo, and pre-release (alpha) builds. Integrity of data is imperative

wherever multiple tiers or web services communicate with each other, and is where most

of the testing should target. The application itself is built with ionic, a hybrid mobile app

framework. It produces a JavaScript application for desktop web browsers, and native

applications for iOS and Android separately. As the codebase grows, manually testing every

functionality in the application would become an increasingly daunting task. The need for

2

an automated testing system is evident, and the following sections will cover the process

from requirements through analysis, to reach a proposed solution.

2 Requirements

2.1 Summary and Criteria selection

The main goal was to build a comprehensive testing strategy that would cover every tier

of the mobile application, targeting software regressions as a preventative measure against

delivering a buggy product. In addition, the solution was to be automated in the build pipeline

to save software testers’ time, by enabling them to focus more on exploratory testing as

opposed to re-testing old features of the software constantly. Part of the requirement was

also to determine which technologies were compatible with the existing software systems,

in the case of Ultimate Software’s mobile platform.

Additional requirements for the strategy are as follows:

• Should be mostly automated, and any bugs uncovered by this system should be

reproducible through manual testing

• Should not cause a significant performance impact to the development pipeline, or

have a ”bottleneck” effect

• Should be compatible with existing technologies in the pipeline

• Should provide feedback and alert the developers if a failure occurs

From these requirements we select the following criteria:

• Automation: How well does the system help reduce manual/ repetitive testing? (Level

of automation)

• Setup time: How much time is required to get the system running? (Amount of effort

required)

• Computational resources: Does the system require great amount of computing power?

(Amount of computational power required)

• Coverage: Can the system test multiple tiers and cover multiple processes in the

3

pipeline? (Amount of coverage provided)

• Maintenance: How much effort is required in the upkeep of this system? (Amount of

effort required)

• Re-usability: Could this system be used for other software projects as well? (Level of

re-usability)

• Feedback and logging capability: Does this system provide means to notify the devel-

oper/ tester of a failed pipeline process or test? (Feedback capability)

3 Design options

Figure 3-1. An overview of the multi-tier architecture of the mobile web application

3.1 Summary of choices available for enhanced testing

To address the main goal of decreasing time wasted in manual/ repetitive testing in the build

pipeline, different technologies were considered based on the features that they offered,

compatibility with the build pipeline, and user-friendliness. Figure 3-1 illustrates the multi-

tier mobile software system that was to be tested. It consisted of a client facing ”frontend app”

implemented in JavaScript, a ”middleware” used to relay data and perform computations

written in Java, and the main ”backend” software product written in C#. For simplicity, the

logic tier and data tier of the C# application (from a general 3-tier architecture model) are

abstracted in the bottommost layer, which is shown as the ”Business Logic and Data tier” in

Figure 3-1.

4

For the backend or serverside components of the mobile application, the choices were:

1. No automated testing: All changes by developers would be code reviewed but no

testing would be performed at build time. This was intended to shorten build times and

deploy to a test environment sooner after a change is made to the software.

2. Integrated unit tests with mock data: This was already done for several projects

belonging to the serverside tier; the mock data would be derived from sample expected

given by the specification, usually a defined JSON object. This mock data would

need to be manually updated regularly as new formats expected from new features are

implemented.

3. A separate unit test framework: This option differs from the one above, as the unit

test framework is intended to be flexible enough to test across the multiple service

tiers and even products. It would not require mock data, but instead compare the data

retrieved from the C# tier to the Java tier, to verify its integrity.

4. Postman REST client: An API testing tool with automated features developed and

maintained by a startup company, with an intuitive user interface and support for

sharing test collections and suites. All test cases would need to be written in JavaScript,

for the automated ”runner” feature to execute them.

For the frontend (actual mobile application), the following were considered:

1. Web browser tests (Selenium): Since modern browsers such as Mozilla Firefox and

Google Chrome provide WebDriver tools for developers, they can be used in simulating

use cases of the application.

2. On physical device: No additional measures will be added as part of the pipeline, as

the application would be pushed onto Android and iOS testing devices at the end of a

successful build, through the HockeyApp distribution system [5].

3. On Android and iOS emulator: The mobile application will be emulated in place of

a physical device, which can be done on most modern desktop machines. For emulating

the iOS app however, a Mac computer will be required, since there is currently no

official support for Windows computers.

A weighing scheme was chosen according to the importance of each criteria in the con-

5

Table 3-1. Criteria weighing

Criteria Auto. Setup. Comp. Cover. Maint. Re-use. Feedback
Weight 25% 12% 13% 15% 5% 10% 15%

siderations of this project, which is shown on Table 3-1. Each criteria of an option was

then assigned a numerical score from 0 to 10 based on qualitative analysis, with 0 being

the lowest and 10 being the highest score; this is the number to the left of the arrow (→).

Applying the weight to each score by multiplying the percentage weight (ex. score of 5 with

a 15% weight would yield 5 * 0.15 = 0.75), then multiplying by 10 gives the normalised

score on the right hand side of the arrow (0.75 * 10 = 7.5). The total score for each option

was obtained by summing the normalized score of each criteria across the row of the table.

3.2 Comparison of options for backend testing

The main purpose of testing the backend is to ensure that data transferred between the

main C# application and Java middleware remains consistent. As previously discussed, the

middleware was designed to alleviate the workload done by the mobile app. Such workloads

include sorting, formatting, and collating data from different web services abstracted in the

main application tier, before it is sent to be displayed on the client or frontend 1. Since the

API supports many functionalities, a unit testing approach is suitable.

The first option of not performing testing was given the lowest score in automation, coverage,

and feedback since it would not perform any of these functions. Setup and maintenance

received the highest score as no extra effort will be required in simply doing nothing.

The second option of testing against mock data received mid-to-high scores for setup time,

maintenance effort, and feedback. It received low scores for Re-usability and Coverage since

the mock data would need to be changed accordingly to test different tiers or components of

the application.

The third option offered the best in automation and providing feedback, as a comprehensive

test framework can incorporate different libraries for these functions. It also has better

Re-usability since it’s able to interface with multiple tiers of the software system, at the
1In most of this report, ”backend tests” and ”API tests” can be used interchangeably. It is only ”frontend tests” that have further

distinction between ”UI” and ”Wiring” tests.

6

Table 3-2. Qualitative evaluation of backend testing options

Auto. Setup. Comp. Cover. Maint. Re-use. Feedback Score
1. No tests 0→ 0 10→ 12 10→ 13 0→ 0 10→ 5 5→ 5 0→ 0 25

2. Integrated 5→ 12.5 8→ 9.6 5→ 6.5 3→ 4.5 8→ 4 2→ 2 9→ 13.5 52.6
3. Framework 10→ 25 6→ 7.2 5→ 6.5 9→ 13.5 6→ 3 8→ 8 10→ 15 78.2

4. Postman 8→ 20 7→ 8.4 7→ 9.1 6→ 9 8→ 4 9→ 9 6→ 9 68.5

expense of computational power and effort in maintenance, as well as initial set up of the

framework project.

The fourth option scored very well for Re-usability, Automation, and required little effort to

Maintain due to Postman’s test collection sharing and runner functionality. Its main appeal

is how it allows developers and testers to build testing suites collaboratively with its intuitive

user interface. Coverage and Feedback were given slightly lower scores since this tool only

tested the API functionality, and ran on a single workstation computer.

3.3 Comparison of options for frontend testing

The main purposes of testing the frontend were: Firstly, to ensure that user interface elements

in the mobile application were being displayed in the correct location. This would be referred

to as the ”UI Tests” in Figure 3-1. Secondly, to ensure that the frontend mobile application

communicates with the middleware properly. The scope of this type of testing would include

fetching from and sending data to the middleware through HTTP GET and POST requests

respectively, with the proper frontend JavaScript implementations. This would be referred

to as the ”Wiring Tests” in Figure 3-1.

The first option of testing using a web browser received the best scores in Automation,

Coverage, Re-usability, and Feedback. This is so due to the available web drivers and

built-in developer tools which are present in most modern browsers (such as the debug

console in Chrome, Firefox, Safari). The only drawback would be that WebDrivers usually

require more memory and computational power, especially when being run for extended

periods of time in automated testing; this point is revisited in Section 6. The second option

of testing on physical devices scored the highest in setup and maintenance, as after all,

the process of installing the application natively is usually straightforward. Each build or

iteration of the app coming from each successful continuous integration build job would be

7

Table 3-3. Qualitative evaluation of frontend testing options

Auto. Setup. Comp. Cover. Maint. Re-use. Feedback Score
1. Browser 10→ 25 8→ 9.6 7→ 9.1 6→ 9 8→ 4 9→ 9 8→ 12 85.7
2. Device 5→ 12.5 9→ 8.4 8→ 10.4 10→ 15 9→ 4.5 7→ 7 6→ 9 66.8

3. Emulator 7→ 17.5 5→ 6 3→ 3.9 8→ 12.5 7→ 3.5 5→ 5 7→ 10.5 58.9

pushed onto the device though the HockeyApp distribution system, which could provide

crash reports, logging and feedback during manual testing. Full coverage of tests would also

be achieved as the end user would ultimately interact with the application through a physical

device. However, automation of tests wouldn’t be achieved on physical devices as easily2.

The third option of using an emulator to test scored better than the browser in coverage as

the application is tested in the native environment (Android, iOS). However, this option

received lower scores for setup time and computational power requirement, since the

emulator usually depends on an SDK installation (Android SDK or Xcode for iOS). In

addition, certain hardware capabilities present on physical devices wouldn’t be available for

testing, such as the camera, fingerprint scanner etc...

3.4 Possible solutions

After performing the qualitative analysis for the frontend and backend tests, possible solu-

tions were constructed using one option from each of the frontend and backend layers:

1. Emulator frontend with Postman backend:

Using a local environment on a desktop or laptop, the mobile app would be run

within an emulator for testing. This entailed that the corresponding SDK or software

development kit would need to be installed on all machines used to test the frontend

beforehand, and that Windows operating systems would not have access to the iOS

simulator 3. Testing of the backend API would be accomplished with the Postman

REST client’s collection runner feature, with separately maintained test scripts.

2. Device frontend with Test Framework backend:

The mobile app would be tested on a physical Android and iOS device, and crash
2The device testing here refers to exploratory and/ or stress testing; Appium will be considered together with Selenium for simplicity.
3Official support for iOS and Xcode development from Apple is absent on Windows machines, as of the time this report was written

8

reports could be collected through HockeyApp. This would best represent the end user

experience. Backend testing would be run on the continuous integration server as JUnit

[7] tests.

3. Browser frontend with Test Framework backend:

The mobile app will be tested using the Selenium webdriver tool in the form of unit

tests. This would cover most functionalities of the app with the exception of device

specific features, such as multitasking switching or gestures/ swipe-to-go back on iOS.

Backend testing would again be run on continuous integration servers. This solution

can be implemented using a single Java unit test framework project since Selenium

can be imported as a Java library, and the API tests can be separately categorized with

JUnit [2].

4. Browser frontend with Integrated tests backend:

The mobile app will be tested using the Selenium WebDriver as per the previous option.

Mock data would be generated and used to test the backend layer instead, according to

the expected format of data that the middleware and main application returns.

Ultimately, solution 3 was selected as the proposed solution for testing against the mobile

application, based on the qualitative analysis score; the following section discusses the

benefits and drawbascks of this particular combination.

4 Analysis of proposed solution

As determined from the qualitative decision matrix from section 3, the best option for

backend and frontend testing was with a separate test framework. This solution has great

maintainability by having one unified collection of unit tests, as opposed to having two

independent solutions for frontend and backend testing. Tests could also be categorized by

the level of coverage. For example, one may wish to perform ”smoke testing”, where only

the essential functions of the application are checked. In the case of Ultimate Software’s

mobile application architecture (Figure 3-1), the backend was comprised of a main C#

application server, and a Java middleware server; both communicate via transferring JSON

data over HTTP requests. An example automated unit test for the API would take following

form: Fetch data from C# server, fetch data from Java server, compare the two data objects

for discrepancies. Examples of such discrepancies could be precision of decimal values

9

(12.3400 to 12.3), truncated or untrimmed string literals (”Alice ” to ”Alice”), or differing

binary data (such as images).

Frontend UI testing on the other hand was automated using Selenium Webdriver tools, by

emulating user flows within the application. For instance, when the user starts the application,

the login screen should appear prompting for their username and password in the respective

fields, as well as a ”sign in” button in the appropriate location. Verifying this was achieved

by searching for the appropriate WebElement and checking if it is visible, either by XPath or

tag attribute, which can be found using any modern web browser’s debugging functionality.

Wiring tests are written in a similar style to the UI tests, but concerns more with the data

and formatting rather than the positioning of visual elements and any user interface bugs.

Since the middleware is implemented in Java, it is reasonable to reuse classes that define

the object model of the resultant JSON in the test framework; details of configuration are

discussed in Appendix A and Section 4.1. This reduces the number of duplicate classes and

overall increases the maintainability of the test framework.

4.1 Setup

The proposed strategy in figure Figure 4-1 required additional jobs (UI, Wiring, and API

testing) to be scheduled on the continuous integration server that would run periodically,

most likely daily. This ensured that developers would be notified of any breaking changes

at least once per day, and was configured such that any test failures would be reported to the

author of the latest change through email. The Maven buildsystem was used to manage the

build processes on the continuous integration server. A build agent would fetch the latest

source code from version control (Git repository), then download the necessary artifacts

for the Java Unit tests to compile and run. These artifacts include the Selenium WebDriver

and shared classes from the Java middleware, depending on the type of test being executed,

which can be specified by running Maven with command-line parameters [8]. For details on

Maven configuration, please refer to Appendix A.

10

Figure 4-1. The software development build pipeline with proposed testing process

5 Performance

A total of 27 backend test cases and 60 frontend test cases and test flows, including Wiring

tests, were written in collaboration with other QA team members initially. 6 build agents

were set up as Ubuntu Linux virtual machines, each configured with 4 CPU cores and 16

GB of memory. The backend test suite took around 5 minutes to complete, whereas the

frontend tests took nearly 4 hours to finish when it ran on a build agent. At times, several

build agents had exhausted the default memory allocated by the JVM, though this issue was

remedied by refactoring and is described in the following section.

The proposed solution successfully fulfilled all the requirements described in section 2.1

with through the following characteristics:

11

Automation: the test suites were set up on the team’s continuous integration servers to run

periodically, with logging enabled to document any errors and failures in each test case, so

that testers may manually reproduce potential bugs.

Performance impact: since the frontend test suite took a relatively long time to complete,

it was scheduled to run everyday at 2 AM, when the servers would experience less loads

compared to during daytime. The backend test suite was also scheduled daily, but could be

run as needed since it took little over 5 minutes.

Compatibility: the test framework project was able to reuse code from the Java middleware

project, by specifying project dependencies in the Maven buildsystem configuration file,

”pom.xml”. Maven is preferred for managing large software projects with many dependen-

cies for this purpose, and is widely adopted in the software industry.

Feedback: whenever a compiler error or test failure occurred, the continuous integration

server was configured to automatically send an email to notify the author of the last code

change.

6 Additional optimizations and improvements

In order to improve the performance and re-usability of this automated test framework,

a series of code refactoring methods were applied to the project as the number of unit

tests grew. This ranged from commenting and documenting parts of code to implementing

appropriate software design patterns. Accompanying code with comments provides insight

into the workings of the existing solution, allowing future collaborators to understand and

if necessary, improve upon it. Software design patterns offer a set of guidelines or ”best

practices” in writing code, and saves developers’ time by improving its maintainability and

re-usability. Often in software, an easy-to-implement solution is not the most maintainable

one in the future. This leads to ”Technical Debt” accumulating [12], as developers choose

the former over the latter, for reasons such as convenience or in order to meet deadlines.

In the example mentioned in section 5, a memory leak was discovered when running the

frontend test suite. Further investigation led to the discovery that every test case created

a new instance of HttpClient class, which was found to be inefficient upon review of the

12

Apache documentation [6]. Therefore, the test framework was refactored accordingly to use

the singleton pattern for creating HTTP connections, such that each test case may reuse the

same instance of that class. The result was an effective halving of the frontend test suite

runtime, from about 4 hours to 2 hours (Table 6-1). The backend tests did not benefit much

from this refactoring (Table 6-2) since the test cases used a static class to establish HTTP

connections to the backend services, and these connection instances were already being

reused.

Table 6-1. Time taken to run frontend tests before and after refactoring

Frontend tests runtime (Before) Frontend tests runtime (After)
Trial 1 14186 seconds 7511 seconds

Trial 2 13824 seconds 8731 seconds

Trial 3 13596 seconds 8039 seconds

Trial 4 13691 seconds 8129 seconds

Average 13824.25 seconds 8102.5 seconds

Table 6-2. Time taken to run backend tests before and after refactoring

Backend tests runtime (Before) Backend tests runtime (After)
Trial 1 351 seconds 384 seconds

Trial 2 346 seconds 393 seconds

Trial 3 413 seconds 356 seconds

Trial 4 374 seconds 332 seconds

Average 371 seconds 366.25 seconds

13

Conclusions

From the analysis conducted on each alternative solution leading up to the selection of

the proposed solution, it was concluded that the best option for testing against Ultimate

Software’s multi-tier mobile application was to use a separately maintained unit test frame-

work. This framework would be a collection of Java unit test cases (JUnit) for verifying

each feature of the application, and tests would be categorized by type (API, UI, or Wiring

Figure 3-1) with the JUnit categories function. Specifying command line options when

running Maven on the continuous integration servers would allow for running each type

of test separately, then scheduling each job ensures that each type of test would run at

least once per day. This solution successfully satisfied every requirement from Section 2 as

determined from the qualitative analysis and performance results, and is also one that can

be extended to test other multi-tier software products from Ultimate Software.

14

Recommendations

Based on the analysis and conclusions in this report, it is recommended that other teams

collaborating with the mobile team at Ultimate Software adopt and expand this framework

for their own testing purposes, so that it would become a standard method for testing new

features in the mobile application. There are a few items that could be extended beyond

the scope of this report, either as improvements to performance or to increase the user-

friendliness of this solution. Examples of such items to consider would include:

• Investigate or research a more lightweight backend testing solution with Newman [9],

which is a command-line compatible interface of the Postman [10] runner.

• Create comprehensive documentation and guidelines for how to use and contribute to

the test framework, so that future testers have a proper standard to model their tests

after.

• Create a Twitterbot script to post build and test failures from the continuous integration

server, to a Twitter feed for the entire development team to see.

15

Glossary

API: Application Program Interface, a set of defined subroutines of a software application
that allows other components or applications to interact with the software..

HTTP: HyperText Transfer Protocol, a protocol definition or rules for transferring and
formatting of messages and data between information systems.

JSON: Java Script Object Notation, a standard format for interchanging and generating data
by software applications, that is also human-readable.

JVM: Java Virtual Machine, the software that allows computers to execute compiled Java
program.

QA: Quality Assurance, a team or department in software development concerned with the
testing of software, with the goal of delivering bug-free software to customers.

REST/RESTful: Representational State Transfer, an architecture style in designing net-
working software for web services to serve web resources (such as JSON and XML data).

UI: User Interface, the means or components of software that the user will use to interact
with the application, usually with visual or graphical elements.

WKRPT: Work-term report; the acronym used by the University of Waterloo Undergradu-
ate Calendar.

XML: Extensible Markup Language, a human and machine readable format for encoding
data, using enclosing tags.

XPath: Syntax for defining parts of an XML document, using path expressions to navigate
the XML document. Expressions can be used to select nodes or node-sets in an XML
document, such as web elements in an HTML document.

16

References

[1] Apache Subversion Design Spec. URL: http://svn.apache.org/repos/asf/
subversion/trunk/notes/subversion-design.html#goals.

[2] S. Arod. JUnit4 Categories. URL: https://github.com/junit-team/junit4/
wiki/Categories.

[3] K. Fogel. Open Source Development with CVS, 3rd Edition. 2000. URL: http :
//cvsbook.red-bean.com/cvsbook.html#Introduction.

[4] Git. URL: https://github.com/git/git.
[5] HockeyApp. Microsoft. URL: https://hockeyapp.net.
[6] HttpClient Performance Optimization Guide. Apache Software Foundation. URL:

http://hc.apache.org/httpclient-3.x/performance.html.
[7] JUnit4. JUnit. URL: http://junit.org/junit4/.
[8] Maven Tests. Apache Software Foundation. URL: https://maven.apache.org/

surefire/maven-surefire-plugin/examples/single-test.html.
[9] Newman. https://github.com/postmanlabs/newman/blob/release/2.x/

README.md. 2016.
[10] Postman. Postdot Technologies, Inc., 2016.
[11] Selenium. SeleniumHQ, 2000. URL: http://www.seleniumhq.org/.
[12] Chris Sterling. Managing Software Debt: Building for Inevitable Change (Agile

Software Development Series) 1st Edition. Addison-Wesley, 2010, pp. 18, 30.

17

http://svn.apache.org/repos/asf/subversion/trunk/notes/subversion-design.html#goals
http://svn.apache.org/repos/asf/subversion/trunk/notes/subversion-design.html#goals
https://github.com/junit-team/junit4/wiki/Categories
https://github.com/junit-team/junit4/wiki/Categories
http://cvsbook.red-bean.com/cvsbook.html#Introduction
http://cvsbook.red-bean.com/cvsbook.html#Introduction
https://github.com/git/git
https://hockeyapp.net
http://hc.apache.org/httpclient-3.x/performance.html
http://junit.org/junit4/
https://maven.apache.org/surefire/maven-surefire-plugin/examples/single-test.html
https://maven.apache.org/surefire/maven-surefire-plugin/examples/single-test.html
https://github.com/postmanlabs/newman/blob/release/2.x/README.md
https://github.com/postmanlabs/newman/blob/release/2.x/README.md
http://www.seleniumhq.org/

Appendix A Maven Configuration

Maven:

There were two configuration files that were edited for Maven to source the proper artifacts:
pom.xml and settings.xml. Both files resided in the root directory of the Java test framework
project, such that the build agent could read the file at build time.

settings.xml:

The highlighted lines represent additions of repositories made to the file, that would allow
Maven to source artifacts from the proper hosted servers. Note that there can be multiple
repositories under the ¡repositories¿ parent tag, which could serve to separate artifacts
by build type (a development build would use snapshots, rather than a release build for
example), or provide redundancy in the event that one repository becomes unavailable.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <settings xmlns="http://maven.apache.org/SETTINGS /1.1.0" xmlns:xsi="http://www.w3.org

/2001/ XMLSchema -instance" xsi:schemaLocation="http://maven.apache.org/SETTINGS

/1.1.0 http: // maven.apache.org/xsd/settings -1.1.0. xsd">

3 <profiles >

4 <profile >

5 <repositories >

6 <repository>

7 <snapshots>

8 <enabled>false</enabled>

9 </snapshots>

10 <id>central</id>

11 <name>libs-release</name>

12 <url>RELEASE-ARTIFACT-REPO-URL</url>

13 </repository>

14 <repository>

15 <snapshots />

16 <id>snapshots</id>

17 <name>libs-snapshot</name>

18 <url>SNAPSHOT-ARTIFACT-REPO-URL</url>

19 </repository>

20 <repository >

21 <snapshots >

22 <enabled >false</enabled >

23 </snapshots >

24 <id>central2 </id>

25 <name>Maven Repository Switchboard </name>

26 <url>http://repo1.maven.org/maven2 </url>

27 </repository >

28 </repositories >

29 <pluginRepositories >

30 ...

31 </pluginRepositories >

32 <id>artifactory </id>

33 </profile >

34 </profiles >

35 <activeProfiles >

36 <activeProfile >artifactory </activeProfile >

37 </activeProfiles >

38 </settings >

18

pom.xml:

The highlighted lines show how artifacts published by another software project can be added.
In this case, the dependency was a collection of Java classes shared by the middleware. It is
ideal to re-use these artifacts whenever possible to reduce duplicated code, which results in
better maintainability of the overall test framework. Software libraries such as JUnit [7] and
Selenium [11] (and Appium) are also imported this way, as seen in the following snippet:

1 <?xml version="1.0" encoding="UTF -8"?>

2 <project xmlns="http: //maven.apache.org/POM /4.0.0" xmlns:xsi="http://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation="http://maven.apache.org/POM /4.0.0 http://

maven.apache.org/xsd/maven -4.0.0. xsd">

3 <modelVersion >4.0.0</modelVersion >

4 <groupId >com.ultimatesoftware.qa-project </groupId >

5 <artifactId >qa-project </artifactId >

6 <version >0.2.0</version >

7 <name>QA test framework project </name>

8 <build>

9 <plugins >

10 <plugin >

11 <artifactId >maven -compiler -plugin </artifactId >

12 <configuration >

13 <source >1.8</source >

14 <target >1.8</target >

15 </configuration >

16 </plugin >

17 </plugins >

18 <testResources >

19 <testResource >

20 <directory >src/test/resources/Mobile </directory >

21 </testResource >

22 </testResources >

23 </build>

24 <description >QA for backend services for the mobile app.</description >

25 <dependencies >

26 ...

27 <dependency >

28 <groupId >junit</groupId >

29 <artifactId >junit </artifactId >

30 <version >4.12</version >

31 </dependency >

32 ...

33 <dependency >

34 <groupId >org.seleniumhq.selenium </groupId >

35 <artifactId >selenium -java</artifactId >

36 <version >2.53.0 </version >

37 </dependency >

38 <dependency>

39 <groupId>com.ultimatesoftware.mobile-middleware</groupId>

40 <artifactId>mobile-middleware</artifactId>

41 <version>0.7.0-SNAPSHOT</version>

42 </dependency>

43 ...

44 <dependency >

45 <groupId >io.appium </groupId >

46 <artifactId >java -client </artifactId >

47 <version >4.0.0</version >

48 </dependency >

49 ...

50 </dependencies >

51 ...

52 </project >

19

	Contributions
	Summary
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Scope and considerations

	Requirements
	Summary and Criteria selection

	Design options
	Summary of choices available for enhanced testing
	Comparison of options for backend testing
	Comparison of options for frontend testing
	Possible solutions

	Analysis of proposed solution
	Setup

	Performance
	Additional optimizations and improvements
	Conclusions
	Recommendations
	Glossary
	References
	Maven Configuration

